A new approximation for the chi-square integral

Authors:
H. L. Gray, R. W. Thompson and G. V. McWilliams

Journal:
Math. Comp. **23** (1969), 85-89

MSC:
Primary 65.25

MathSciNet review:
0238470

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a new method for estimating the value of an improper integral by a finite sum is introduced. In particular, the method is applied to the Chi-Square integral and proves to be of some value in estimating the value of this integral for values equal or greater than .9.

**[1]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[2]**H. L. Gray and T. A. Atchison,*Nonlinear transformations related to the evaluation of improper integrals. I*, SIAM J. Numer. Anal.**4**(1967), 363–371. MR**0223096****[3]**T. A. Atchison and H. L. Gray,*Nonlinear transformations related to the evaluation of improper integrals. II*, SIAM J. Numer. Anal.**5**(1968), 451–459. MR**0229367****[4]**H. L. Gray & W. R. Schucany, ``On the evaluation of distribution functions,''*J. Amer. Statist. Assoc.*, v. 63, 1968, pp. 715-720.**[5]**Roy Takenaga,*On the evaluation of the incomplete gamma function*, Math. Comp.**20**(1966), 606–610. MR**0203911**, 10.1090/S0025-5718-1966-0203911-3

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25

Retrieve articles in all journals with MSC: 65.25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0238470-5

Article copyright:
© Copyright 1969
American Mathematical Society