Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

On the series expansion method for computing incomplete elliptic integrals of the first and second kinds


Author: H. Van de Vel
Journal: Math. Comp. 23 (1969), 61-69
MSC: Primary 65.25
MathSciNet review: 0239732
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper an attempt is made to improve the series expansion method for computing the incomplete integrals $ F(\phi ,k)$ and $ E(\phi ,k)$. Therefore the following three pairs of series covering the region $ - 1 \leqq k \leqq 1,0 \leqq \phi < \pi /2$ are used: series obtained by a straightforward binomial expansion of the integrands, series valid for $ {k'^2}{\tan ^2}\phi < 1$, and new series which converge for $ \phi > \pi /4$ and for all values of $ k$. Terms of the last two pairs of series can be generated by means of the same recurrence relations, so that the coding of the whole is not longer than that for similar methods using only two pairs of series. Any degree of accuracy can be obtained. In general the method is a little bit slower than Bulirsch' calculation procedures which are based on the Landen transformation, but it works more quickly in case of large values of $ {k^2}$ and/or $ \phi $. The new series introduced are also represented in trigonometric form, and the double passage to the limit $ {k^2} \to 1$, $ \phi \to \pi /2$ is discussed.


References [Enhancements On Off] (What's this?)

  • [1] A. M. Legendre, Traité des Fonctions Elliptiques. Tome 2, Paris, 1826.
  • [2] E. L. Kaplan, Auxiliary table for the incomplete elliptic integrals, J. Math. Physics 27 (1948), 11–36. MR 0025247 (9,619g)
  • [3] A. R. DiDonato and A. V. Hershey, New formulas for computing incomplete elliptic integrals of the first and second kind, J. Assoc. Comput. Mach. 6 (1959), 515–526. MR 0107353 (21 #6078)
  • [4] G. E. Lee-Whiting, Formulas for computing incomplete elliptic integrals of the first and second kinds, J. Assoc. Comput. Mach. 10 (1963), 126–130. MR 0147679 (26 #5193)
  • [5] Cecil Hastings Jr., Approximations for digital computers, Princeton University Press, Princeton, N. J., 1955. Assisted by Jeanne T. Hayward and James P. Wong, Jr. MR 0068915 (16,963e)
  • [6] Brigitte Radon, Sviluppi in serie degli integrali ellittici, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. (8) 2 (1950), 69–109 (Italian). MR 0045254 (13,553d)
  • [7] D. J. Hofsommer and R. P. van de Riet, On the numerical calculation of elliptic integrals of the first and second kind and the elliptic functions of Jacobi, Numer. Math. 5 (1963), 291–302. MR 0166906 (29 #4179)
  • [8] Roland Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965), 78–90. MR 0175284 (30 #5469)
  • [9] S. C. van Veen, Ueber die Entwicklung der unvollständigen elliptischen Integrale erster und zweiter Art in stark konvergenten Reihen, Nederl. Akad. Wetensch., Proc. 44 (1941), 974–977, 1085–1091, 1206–1209; 45, 37–42 (1942) (German). MR 0014835 (7,338g)
  • [10] I. S. Gradsteïn & I. M. Ryžik, Tables of Integrals, Series and Products, Fizmatgiz, Moscow, 1963; English transl., Academic Press, New York, 1965. MR 28 #5198; MR 33 #5952.
  • [11] F. Bowman, Introduction to elliptic functions with applications, English Universities Press, Ltd., London, 1953. MR 0058760 (15,420d)
  • [12] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642 (29 #4914)
  • [13] Herbert Bristol Dwight, Tables of integrals and other mathematical data, 4th ed, The Macmillan Company, New York, 1961. MR 0129577 (23 #B2613)
  • [14] Paul F. Byrd and Morris D. Friedman, Handbook of elliptic integrals for engineers and physicists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Bd LXVII, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954. MR 0060642 (15,702a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.25

Retrieve articles in all journals with MSC: 65.25


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1969-0239732-8
PII: S 0025-5718(1969)0239732-8
Article copyright: © Copyright 1969 American Mathematical Society