Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

On the computation of a bivariate $ t$-distribution


Authors: D. E. Amos and W. G. Bulgren
Journal: Math. Comp. 23 (1969), 319-333
MSC: Primary 65.25; Secondary 62.00
MathSciNet review: 0242348
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The cumulative bivariate $ t$-distribution associated with random variables $ {T_1} = {X_1}/{(S/k)^{1/2}}$, $ {T_2} = {X_2}/{(S/k)^{1/2}}$ is considered where $ {X_1}$, $ {X_2}$ are bivariate normal with correlation coefficient $ \rho $ and $ S$ is an independent $ {\chi^2}$ random variable with $ k$ degrees of freedom. Representations in terms of series and simple, one-dimensional quadratures are presented together with efficient computational procedures for the special functions used in numerical evaluation.


References [Enhancements On Off] (What's this?)

  • [1] C. W. Dunnett, ``A multiple comparison procedure for comparing several treatments with a control,'' J. Amer. Statist. Assoc., v. 50, 1955, pp. 1096-1121.
  • [2] Charles W. Dunnett and Milton Sobel, A bivariate generalization of Student’s 𝑡-distribution, with tables for certain special cases, Biometrika 41 (1954), 153–169. MR 0061793 (15,885f)
  • [3] C. W. Dunnett and M. Sobel, Approximations to the probability integral and certain percentage points of a multivariate analogue of Student’s 𝑡-distribution, Biometrika 42 (1955), 258–260. MR 0068169 (16,840l)
  • [4] A. Erdélyi, et al., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953. MR 15, 419.
  • [5] A. Erdélyi, et al., Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953. MR 15, 419.
  • [6] A. Erdélyi, et al., Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York, 1954. MR 15, 868.
  • [7] Walter Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev. 9 (1967), 24–82. MR 0213062 (35 #3927)
  • [8] Shanti S. Gupta and Milton Sobel, On a statistic which arises in selection and ranking problems, Ann. Math. Statist 28 (1957), 957–967. MR 0093846 (20 #366)
  • [9] S. S. Gupta, ``Probability integrals of multivariate normal and multivariate $ t$,'' Ann. Math. Statist., v. 34, 1963, pp. 792-828. MR 27 #2048.
  • [10] S. John, On the evaluation of the probability integral of the multivariate 𝑡-distribution, Biometrika 48 (1961), 409–417. MR 0144406 (26 #1951)
  • [11] S. John, Methods for the evaluation of probabilities of polygonal and angular regions when the distribution is bivariate 𝑡, Sankhyā Ser. A 26 (1964), 47–54. MR 0198581 (33 #6736)
  • [12] P. R. Krishnaiah & J. V. Armitage, Percentage Points of the Multivariate $ t$-Distribution, ARL 65-199, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, 1965.
  • [13] N. N. Lebedev, Special functions and their applications, Revised English edition. Translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0174795 (30 #4988)
  • [14] D. B. Owen, A special case of a bivariate non-central 𝑡-distribution, Biometrika 52 (1965), 437–446. MR 0205361 (34 #5190)
  • [15] K. C. S. Pillai and K. V. Ramachandran, On the distribution of the ratio of the 𝑖th observation in an ordered sample from a normal population to an independent estimate of the standard deviation, Ann. Math. Statistics 25 (1954), 565–572. MR 0064356 (16,270d)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.25, 62.00

Retrieve articles in all journals with MSC: 65.25, 62.00


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1969-0242348-0
PII: S 0025-5718(1969)0242348-0
Article copyright: © Copyright 1969 American Mathematical Society