On computation of the bivariate normal distribution

Author:
D. E. Amos

Journal:
Math. Comp. **23** (1969), 655-659

MSC:
Primary 65.25; Secondary 62.00

DOI:
https://doi.org/10.1090/S0025-5718-1969-0247733-9

MathSciNet review:
0247733

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A quadrature and two series representations are given as limiting cases of a bivariate -distribution. The quadrature is taken over the complementary error function and the series are sums of Bessel functions and incomplete beta functions, respectively. Comparisons with some known results are made in terms of accuracy and computer time.

**[1]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[2]**D. E. Amos and W. G. Bulgren,*On the computation of a bivariate 𝑡-distribution*, Math. Comp.**23**(1969), 319–333. MR**0242348**, https://doi.org/10.1090/S0025-5718-1969-0242348-0**[3]**C. W. Clenshaw,*Chebyshev Series for Mathematical Functions*, National Physical Lab. Math. Tables, vol. 5, HMSO, London, 1962. MR**26**#362.**[4]**W. Gautschi, "Algorithm 222-incomplete beta function ratios,"*Comm. Assoc. Comput. Mach.*, v.**7**, 1964, pp. 143-144; "Certification of algorithm 222," Ibid., v. 244, 1964.**[5]**W. Gautschi, "Algorithm 236-Bessel functions of the first kind,"*Comm. Assoc. Comput. Mach.*, v. 7, 1964, pp. 479-480; "Certification of algorithm 236," Ibid., v. 8, 1965, pp. 105-106.**[6]**Walter Gautschi,*Computational aspects of three-term recurrence relations*, SIAM Rev.**9**(1967), 24–82. MR**0213062**, https://doi.org/10.1137/1009002**[7]**Shanti S. Gupta,*Bibliography on the multivariate normal integrals and related topics*, Ann. Math. Statist.**34**(1963), 829–838. MR**0152069**, https://doi.org/10.1214/aoms/1177704005**[8]**Y. L. Luke and J. Wimp,*Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray*, Math. Comp.**17**(1963), 395–404. MR**0157014**, https://doi.org/10.1090/S0025-5718-1963-0157014-4**[9]**Donald B. Owen,*Tables for computing bivariate normal probabilities*, Ann. Math. Statist.**27**(1956), 1075–1090. MR**0127562**, https://doi.org/10.1214/aoms/1177728074**[10]**W. F. Sheppard, "On the calculation of the double integral expressing normal correlation,"*Trans. Cambridge Philos. Soc.*, v. 19, 1900, pp. 23-69.**[11]***Tables of the Bivariate Normal Distribution Function and Related Functions*, Nat. Bur. Standards Appl. Math. Series, 50, Superintendent of Documents, U. S. Government Printing Office, 1959.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25,
62.00

Retrieve articles in all journals with MSC: 65.25, 62.00

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0247733-9

Article copyright:
© Copyright 1969
American Mathematical Society