Some limiting cases of the -transformation

Authors:
H. L. Gray and W. R. Schucany

Journal:
Math. Comp. **23** (1969), 849-859

MSC:
Primary 65.55; Secondary 41.00

DOI:
https://doi.org/10.1090/S0025-5718-1969-0260172-X

MathSciNet review:
0260172

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper some new nonlinear transformations are introduced. They arise from considering the limit of the -transformation as a particular parameter approaches its limiting value. The primary purpose of these transformations is to increase the rate of convergence of an improper integral. However, by introduction of an iteration method it is shown that they may also be used to produce approximating functions for the tail of an improper integral. Several examples are included.

**[1]**Samuel Lubkin,*A method of summing infinite series*, J. Research Nat. Bur. Standards**48**(1952), 228–254. MR**0051576****[2]**Daniel Shanks,*Non-linear transformations of divergent and slowly convergent sequences*, J. Math. and Phys.**34**(1955), 1–42. MR**0068901**, https://doi.org/10.1002/sapm19553411**[3]**P. Wynn,*On a device for computing the 𝑒_{𝑚}(𝑆_{𝑛}) tranformation*, Math. Tables Aids Comput.**10**(1956), 91–96. MR**0084056**, https://doi.org/10.1090/S0025-5718-1956-0084056-6**[4]**P. Wynn,*The epsilon algorithm and operational formulas of numerical analysis*, Math. Comp.**15**(1961), 151–158. MR**0158513**, https://doi.org/10.1090/S0025-5718-1961-0158513-X**[5]**P. Wynn,*On the convergence and stability of the epsilon algorithm*, SIAM J. Numer. Anal.**3**(1966), no. 1, 91–122. MR**0207180**, https://doi.org/10.1137/0703007**[6]**H. L. Gray and T. A. Atchison,*Nonlinear transformations related to the evaluation of improper integrals. I*, SIAM J. Numer. Anal.**4**(1967), 363–371. MR**0223096**, https://doi.org/10.1137/0704032**[7]**Wyman G. Fair and Yudell L. Luke,*Rational approximations to the incomplete elliptic integrals of the first and second kinds*, Math. Comp.**21**(1967), 418–422. MR**0222348**, https://doi.org/10.1090/S0025-5718-1967-0222348-5**[8]**T. A. Atchison and H. L. Gray,*Nonlinear transformations related to the evaluation of improper integrals. II*, SIAM J. Numer. Anal.**5**(1968), 451–459. MR**0229367**, https://doi.org/10.1137/0705035**[9]**W. R. Schucany & H. L. Gray, ``A new approximation related to the error function,''*Math. Comp.*, v. 22, 1968, pp. 201-202.**[10]**H. L. Gray & W. R. Schucany, ``On the evaluation of distribution functions,''*J. Amer. Statist Assoc.*, v. 63, 1968, pp. 715-720.**[11]**H. L. Gray and T. A. Atchison,*The generalized 𝐺-transform*, Math. Comp.**22**(1968), 595–605. MR**0229368**, https://doi.org/10.1090/S0025-5718-1968-0229368-6**[12]**H. L. Gray, R. W. Thompson, and G. V. McWilliams,*A new approximation for the chi-square integral*, Math. Comp.**23**(1969), 85–89. MR**0238470**, https://doi.org/10.1090/S0025-5718-1969-0238470-5

Retrieve articles in *Mathematics of Computation*
with MSC:
65.55,
41.00

Retrieve articles in all journals with MSC: 65.55, 41.00

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1969-0260172-X

Article copyright:
© Copyright 1969
American Mathematical Society