Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **23** (1969), 881-890

DOI:
https://doi.org/10.1090/S0025-5718-69-99641-0

Full-text PDF

References | Additional Information

**[1]**W. W. Youden,*Computer Literature Bibliography*1946-1963, National Bureau of Standards, 1965. Reviewed in*Math. Comp.*, v. 19, 1965, p. 704, RMT**140**.**[1]**Bruce S. Berger & Robert Danson,*Tables of Zeros and Weights for Gauss-Laguerre Quadrature*, ms. deposited in the UMT file. (See*Math. Comp.*, v. 22, 1968, pp. 458-459, RMT**40**.)**[2]**Bruce S. Berger, ``Dynamic response of an infinite cylindrical shell in an acoustic medium,''*J. Appl. Mech.*, v. 36, 1969, pp. 342-345.**[1]**Walter Gautschi,*Construction of Gauss-Christoffel quadrature formulas*, Math. Comp.**22**(1968), 251–270. MR**0228171**, https://doi.org/10.1090/S0025-5718-1968-0228171-0**[2]**W. Gautschi, ``Algorithm 331: Gaussian Quadrature Formulas,''*Comm. ACM*, v. 11, 1968, pp. 432-436.**[3]**Gene H. Golub and John H. Welsch,*Calculation of Gauss quadrature rules*, Math. Comp. 23 (1969), 221-230; addendum, ibid.**23**(1969), no. 106, loose microfiche suppl, A1–A10. MR**0245201**, https://doi.org/10.1090/S0025-5718-69-99647-1**[1]**Henry E. Fettis and James C. Caslin,*An extended table of zeros of cross products of Bessel functions*, Report No. ARL 66-0023, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1966. MR**0203096****[1]**Harvard University, Computation Laboratory,*Annals*, v. 3:*Tables of the Bessel Functions of the First Kind of Orders Zero and One*, Harvard University Press, Cambridge, Mass., 1947. (See*MTAC*, v. 2, 1947, pp. 261-262, RMT**380**.)**[2]**British Association for the Advancement of Science,*Mathematical Tables*, v. 6:*Bessel Functions, Part I, Functions of Orders Zero and Unity, Cambridge University Press*, Cambridge, England, 1937. (See*MTAC*, v. 1, 1945, pp. 361-363, RMT**179**.)**[1]**A. S. Anema,*Primitive Pythagorean Triangles with their Generators and their Perimeters, up to 119 992, ms*. in the UMT file. (See*MTAC*, v. 5, 1951, p. 28, UMT 111.)**[2]**F. L. Miksa,*Table of Primitive Pythagorean Triangles with their Perimeters Arranged in Ascending Order from 119 992 to 499 998*, ms. in the UMT file. (See*MTAC*, v. 5, 1951, p. 232, UMT**133**.)**[3]**M. F. Jones,*Isoperimetric Right-Triangles*, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, April 1967. (See*Math. Comp.*, v. 22, 1968, pp. 233-234, RMT**21**.)**[4]**Albert H. Beiler,*Consecutive Hypotenuses of Pythagorean Triangles*, ms. in the UMT file. (See*Math. Comp.*, v. 22, 1968, pp. 690-691, RMT**74**.)**[5]**Albert H. Beiler,*Recreations in the Theory of Numbers*, Dover, New York, 1964, Chapter XIV.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-69-99641-0

Article copyright:
© Copyright 1969
American Mathematical Society