Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Complex zeros of two incomplete Riemann zeta functions


Author: K. S. Kölbig
Journal: Math. Comp. 26 (1972), 551-565
MSC: Primary 65D20
DOI: https://doi.org/10.1090/S0025-5718-1972-0303686-6
MathSciNet review: 0303686
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The computation of the complex zeros of an incomplete Riemann zeta function defined in an earlier paper is extended and new zero trajectories are given. A second incomplete Riemann zeta function is defined and its zero trajectories are investigated numerically as functions of the upper limit $ \lambda $ of the definition integral. It becomes apparent that there exist three different classes of zero trajectories for this function, distinguished by their behaviour for $ \lambda \to \infty $.


References [Enhancements On Off] (What's this?)

  • [1] K. S. Kölbig, ``Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function,'' Math. Comp., v. 24, 1970, pp. 679-696. MR 0273787 (42:8663)
  • [2] Y. L. Luke, The Special Functions and their Approximations. Vol. II, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969. MR 40 #2909. MR 0249668 (40:2909)
  • [3] E. W. Ng, C. J. Devine & R. F. Tooper, ``Chebyshev polynomial expansion of Bose-Einstein functions of order 1 to 10,'' Math. Comp., v. 23, 1969, pp. 639-644. MR 0247739 (40:1002a)
  • [4] E. W. Ng & C. J. Devine, ``On the computation of Debye functions of integer orders,'' Math. Comp., v. 24, 1970, pp. 405-407. MR 0272160 (42:7041)
  • [5] R. B. Dingle, ``The Fermi-Dirac integrals,'' Appl. Sci. Res. B, v. 6, 1957, pp. 225-239. MR 19, 133. MR 0086149 (19:133d)
  • [6] R. B. Dingle, ``The Bose-Einstein integrals,'' Appl. Sci. Res. B, v. 6, 1957, pp. 240-244. MR 19, 133. MR 0086150 (19:133e)
  • [7] W. J. Cody & H. C. Thacher, Jr., ``Rational Chebyshev approximations for Fermi-Dirac integrals of order $ - {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hb... ...$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}$ and $ {\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}$,'' Math. Comp., v. 21, 1967, pp. 30-40.
  • [8] K. S. Kölbig, J. A. Mignaco & E. Remiddi, ``On Nielsen's generalized polylogarithms and their numerical calculation,'' Nordisk Tidskr. Informationsbehandling, v. 10, 1970, pp. 38-74.
  • [9] M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1965. MR 31 #1400. MR 0167642 (29:4914)
  • [10] R. Putschbach, Untersuchungen über die unvollständige Riemannsche Zetafunktion, Inst. Prakt. Mathematik (IPM), Techn. Hochschule Darmstadt, 1948?. (Unpublished.)
  • [11] D. H. Lehmer, ``On the roots of the Riemann zeta-function,'' Acta Math., v. 95, 1956, pp. 291-298. MR 19, 121; MR 19, 1431. MR 0086082 (19:121a)
  • [12] J. Barkley Rosser, L. Schoenfeld & J. M. Yohe, Rigorous Computation and the Zeros of the Riemann Zeta-Function, IFIP Congress 68, Edinburgh, Vol. 1, North-Holland, Amsterdam, 1969, pp. 70-76. MR 41 #2892. MR 0258245 (41:2892)
  • [13] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables. Vol. 1: Introduction, 2nd ed., Published for Scientific Computing Service, Ltd., London, by Addison-Wesley, Reading, Mass., 1962. MR 26 #365a. MR 0142796 (26:365a)
  • [14] T. Håvie, ``On a modification of the Clenshaw-Curtis quadrature formula,'' Nordisk Tidskr. Informationsbehandling, v. 9, 1969, pp. 338-350. MR 41 #1219. MR 0256563 (41:1219)
  • [15] T. Håvie, ``Further remarks on the modified Clenshaw-Curtis quadrature formula,'' Nordisk Tidskr. Informationsbehandling. (To appear.)
  • [16] K. Mahler, ``Ueber die Nullstellen der unvollstaendigen Gammafunktionen,'' Rend. Circ. Mat. Palermo, v. 46, 1930, pp. 1-42.
  • [17] K. S. Kölbig, ``On the zeros of the incomplete gamma function.'' (To appear.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20

Retrieve articles in all journals with MSC: 65D20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1972-0303686-6
Keywords: Incomplete Riemann zeta function, incomplete gamma function, Debye function, complex zeros
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society