Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Discrete Galerkin and related one-step methods for ordinary differential equations


Author: Bernie L. Hulme
Journal: Math. Comp. 26 (1972), 881-891
MSC: Primary 65L05
DOI: https://doi.org/10.1090/S0025-5718-1972-0315899-8
MathSciNet review: 0315899
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New techniques for numerically solving systems of first-order ordinary differential equations are obtained by finding local Galerkin approximations on each subinterval of a given mesh. Different classes of methods correspond to different quadrature rules used to evaluate the innerproducts involved. At each step, a polynomial of degree $ n$ is constructed and the arcs are joined together continuously, but not smoothly, to form a piecewise polynomial of degree $ n$ and class $ {C^0}$. If the $ n$-point quadrature rule used for the innerproducts is of order $ \nu + 1,\nu \geqq n$, then the Galerkin method is of order $ \nu $ at the mesh points. In between the mesh points, the $ j$th derivatives have accuracy of order $ O({h^{\min (\nu ,n + 1)}})$, for $ j = 0$ and $ O({h^{n - j + 1}})$ for $ 1 \leqq j \leqq n$.


References [Enhancements On Off] (What's this?)

  • [1] O. Axelsson, ``A class of $ A$-stable methods,'' Nordisk Tidskr. Informationsbehandling (BIT), v. 9, 1969, pp. 185-199. MR 40 #8266. MR 0255059 (40:8266)
  • [2] J. C. Butcher, ``Implicit Runge-Kutta processes,'' Math. Comp., v. 18, 1964, pp. 50-64. MR 28 #2641. MR 0159424 (28:2641)
  • [3] J. C. Butcher, ``Integration processes based on Radau quadrature formulas,'' Math. Comp., v. 18, 1964, pp. 233-244. MR 29 #2973. MR 0165693 (29:2973)
  • [4] F. H. Chipman, Numerical Solution of Initial Value Problems Using $ A$-stable RungeKutta Processes, Ph.D. Thesis, Univ. of Waterloo, Waterloo, Ontario, 1971.
  • [5] G. J. Cooper, ``Interpolation and quadrature methods for ordinary differential equations,'' Math. Comp., v. 22, 1968, pp. 69-76. MR 36 #7333. MR 0224289 (36:7333)
  • [6] G. G. Dahlquist, ``A special stability problem for linear multistep methods,'' Nordisk Tidskr. Informationsbehandling (BIT), v. 3, 1963, pp. 27-43. MR 30 #715. MR 0170477 (30:715)
  • [7] B. L. Ehle, ``High order $ A$-stable methods for the numerical solution of systems of D. E.'s,'' Nordisk Tidskr. Informationsbehandling (BIT), v. 8, 1968, pp. 276-278. MR 39 #1119. MR 0239762 (39:1119)
  • [8] B. L. Ehle, On Padé Approximations to the Exponential Function and $ A$-Stable Methods for the Numerical Solution of Initial Value Problems, Ph.D. Thesis, Univ. of Waterloo, Waterloo, Ontario, 1969.
  • [9] P. C. Hammer & J. W. Hollingsworth, ``Trapezoidal methods of approximating solutions of differential equations,'' MTAC, v. 9, 1955, pp. 92-96. MR 17, 302. MR 0072547 (17:302g)
  • [10] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962. MR 24 #B1772. MR 0135729 (24:B1772)
  • [11] F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956, MR 17, 788. MR 0075670 (17:788d)
  • [12] B. L. Hulme, ``One-step piecewise polynomial Galerkin methods for initial value problems,'' Math. Comp., v. 26, 1972, pp. 415-426. MR 0321301 (47:9834)
  • [13] K. Wright, ``Some relationships between implicit Runge-Kutta, collocation and Lanczos $ \tau $ methods, and their stability properties,'' Nordisk Tidskr. Informationsbehandling (BIT), v. 10, 1970, pp. 217-227. MR 0266439 (42:1345)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L05

Retrieve articles in all journals with MSC: 65L05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1972-0315899-8
Keywords: Discrete Galerkin methods, initial value problems, ordinary differential equations, piecewise polynomials, collocation, quadrature, implicit Runge-Kutta methods, $ A$-stable
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society