Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Discrete Green's functions

Authors: G. T. McAllister and E. F. Sabotka
Journal: Math. Comp. 27 (1973), 59-80
MSC: Primary 65P05
MathSciNet review: 0341909
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G(P;Q)$ be the discrete Green's function over a discrete h-convex region $ \Omega $ of the plane; i.e., $ a(P){G_{x\bar x}}(P;Q) + c(P){G_{y\bar y}}(P;Q) = - \delta (P;Q)/{h^2}$ for $ P \in {\Omega _h},G(P;Q) = 0$ for $ P \in \partial {\Omega _h}$. Assume that $ a(P)$ and $ c(P)$ are Hölder continuous over $ \Omega $ and positive. We show that $ \vert{D^{(m)}}G(P;Q)\vert \leqq {A_m}/\rho _{P\;Q}^m$ and $ \vert{\tilde D^{(m)}}G(P;Q)\vert \leqq {B_m}d(Q)/\rho _{P\;Q}^{m + 1}$, where $ {D^{(m)}}$ is an mth order difference quotient with respect to the components of P or Q, and $ {\tilde D^{(m)}}$ denotes an mth order difference quotient only with respect to the components of P.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65P05

Retrieve articles in all journals with MSC: 65P05

Additional Information

Keywords: Elliptic difference equations, finite differences
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society