Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 27 (1973), 437449
Fulltext PDF Free Access
References 
Additional Information
 [1]
Y. L. Luke, The Special Functions and Their Approximations, Vols. 1 and 2, Academic Press, New York, 1969.
 [1]
Seymour
Haber, Numerical evaluation of multiple integrals, SIAM Rev.
12 (1970), 481–526. MR 0285119
(44 #2342)
 [2]
I.
M. \cyr{T}sobol′, Mnogomernye kvadraturnye formuly i funktsii
Khaara, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 0422968
(54 #10952)
 [3]
I.
P. Mysovskih and V.
Ja. Černicina, Answer to a question of Radon, Dokl.
Akad. Nauk SSSR 198 (1971), 537–539 (Russian). MR 0281347
(43 #7065)
 [1]
L. K. Frevel, J. W. Turley & D. R. Petersen, SevenPlace Table of Iterated Sine, The Dow Chemical Company, Midland, Michigan, 1959. [See Math. Comp., v. 14, 1960, p. 76, RMT 2.]
 [2]
L. K. Frevel & J. W. Turley, SevenPlace Table of Iterated , The Dow Chemical Company, Midland, Michigan, 1960. [See Math. Comp., v. 15, 1961, p. 82, RMT 3.]
 [3]
L. K. Frevel & J. W. Turley, Tables of Iterated Sine Integral, The Dow Chemical Company, Midland, Michigan, 1961. [See Math. Comp., v. 16, 1962, p. 119, RMT 8.]
 [4]
L. K. Frevel & J. W. Turley, Tables of Iterated Bessel Functions of the First Kind, The Dow Chemical Company, Midland, Michigan, 1962. [See Math. Comp., v. 17, 1963, pp. 471472, RMT 81.]
 [1]
Milton
Abramowitz and Irene
A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied
Mathematics Series, vol. 55, For sale by the Superintendent of
Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
(29 #4914)
 [2]
M.
Godart, An iterative method for the solution
of eigenvalue problems, Math. Comp. 20 (1966), 399–406. MR 0203928
(34 #3775), http://dx.doi.org/10.1090/S00255718196602039289
 [3]
Circular and hyperbolic functions. Exponential and sine and cosine
integrals. Factorial function and allied functions. Hermitian probability
functions, British Association for the Advancement of Science.
Mathematical Tables, vol. I, Cambridge, at the University Press, 1951.
Prepared by the Committee for the Calculation of Mathematical Tables. 3d
ed. MR
0046124 (13,689c)
 [1]
Milton
Abramowitz and Irene
A. Stegun (eds.), Handbook of mathematical functions with formulas,
graphs, and mathematical tables, A WileyInterscience Publication,
John Wiley & Sons, Inc., New York; National Bureau of Standards,
Washington, DC, 1984. Reprint of the 1972 edition; Selected Government
Publications. MR
757537 (85j:00005a)
 [1]
H. E. Fettis & J. C. Caslin, Elliptic Functions for Complex Arguments, Report ARL 670001, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, WrightPatterson Air Force Base, Ohio, January, 1967. See Math. Comp., v. 22, 1968, pp. 230231.
 [2]
F.
M. Henderson, Elliptic functions with complex arguments, The
University of Michigan Press for the University of Michigan Research
Institute, Ann Arbor, Mich., 1960. MR 0147675
(26 #5189)
 [1]
Lai K. Chan & N. N. Chan, "Estimates of the parameters of the double exponential distribution based on selected order statistics," Bull. Inst. Statist. Res. Training, v. 3, 1969, pp. 2140.
 [2]
Lai K. Chan, N. N. Chan & E. R. Mead, "Best linear unbiased estimates of the parameters of the logistic distribution based on selected order statistics," J. Amer. Statist. Assoc., v. 66, 1971, pp. 889892.
 [1]
Dov
Jarden, Recurring sequences: A collection of papers, Second
edition. Revised and enlarged, including numerous new factorizations of
Fibonacci and Lucas numbers by John Brillhart, Riveon Lematematika,
Jerusalem (Israel), 1966. MR 0197383
(33 #5548)
 [2]
Marvin Wunderlich, Tables of Fibonacci Entry Points, The Fibonacci Association, San Jose, California, January 1965. (See Math. Comp., v. 20, 1966, pp. 618619, RMT 87.)
 [1]
M.
Lal and P.
Gillard, On the equation
𝜑(𝑛)=𝜑(𝑛+𝑘), Math. Comp. 26 (1972), 579–583. MR 0319391
(47 #7935), http://dx.doi.org/10.1090/S00255718197203193916
 [1]
 Y. L. Luke, The Special Functions and Their Approximations, Vols. 1 and 2, Academic Press, New York, 1969.
 [1]
 S. Haber, "Numerical evaluation of multiple integrals," SIAM Rev., v. 12, 1970, pp. 481526. MR 0285119 (44:2342)
 [2]
 I. M. Sobol', Multidimensional Quadrature Formulas and Haar Functions, Izdat. "Nauka", Moscow, 1969. (Russian). MR 0422968 (54:10952)
 [3]
 I. P. Mysovskikh & V. IA. Chernitsina, "Answer to a question of Radon," Dokl. Akad. Nauk SSSR, v. 198, 1971, pp. 537539. (Russian) MR 0281347 (43:7065)
 [1]
 L. K. Frevel, J. W. Turley & D. R. Petersen, SevenPlace Table of Iterated Sine, The Dow Chemical Company, Midland, Michigan, 1959. [See Math. Comp., v. 14, 1960, p. 76, RMT 2.]
 [2]
 L. K. Frevel & J. W. Turley, SevenPlace Table of Iterated , The Dow Chemical Company, Midland, Michigan, 1960. [See Math. Comp., v. 15, 1961, p. 82, RMT 3.]
 [3]
 L. K. Frevel & J. W. Turley, Tables of Iterated Sine Integral, The Dow Chemical Company, Midland, Michigan, 1961. [See Math. Comp., v. 16, 1962, p. 119, RMT 8.]
 [4]
 L. K. Frevel & J. W. Turley, Tables of Iterated Bessel Functions of the First Kind, The Dow Chemical Company, Midland, Michigan, 1962. [See Math. Comp., v. 17, 1963, pp. 471472, RMT 81.]
 [1]
 M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1964, p. 256. MR 0167642 (29:4914)
 [2]
 Math. Comp., v. 20, 1966, p. 641, MTE 399. MR 0203928 (34:3775)
 [3]
 British Association for the Advancement of Science, Mathematical Tables, Vol. I: Circular & Hyperbolic Functions, Exponential & Sine & Cosine Integrals, Factorial Function & Allied Functions, Hermitian Probability Functions, 3rd ed., Cambridge Univ. Press, 1951, pp. xxxviii + 40. MR 0046124 (13:689c)
 [1]
 M. Abramowitz & I. A. Stegun, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1964, Table 4.12, pp. 200201. MR 757537 (85j:00005a)
 [1]
 H. E. Fettis & J. C. Caslin, Elliptic Functions for Complex Arguments, Report ARL 670001, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, WrightPatterson Air Force Base, Ohio, January, 1967. See Math. Comp., v. 22, 1968, pp. 230231.
 [2]
 F. M. Henderson, Elliptic Functions with Complex Arguments, Univ. of Michigan Press, Ann Arbor, Michigan, 1960. See Math. Comp., v. 15, 1961, pp. 95, 96. MR 0147675 (26:5189)
 [1]
 Lai K. Chan & N. N. Chan, "Estimates of the parameters of the double exponential distribution based on selected order statistics," Bull. Inst. Statist. Res. Training, v. 3, 1969, pp. 2140.
 [2]
 Lai K. Chan, N. N. Chan & E. R. Mead, "Best linear unbiased estimates of the parameters of the logistic distribution based on selected order statistics," J. Amer. Statist. Assoc., v. 66, 1971, pp. 889892.
 [1]
 Dov Jarden, Recurring Sequences, 2nd ed., Riveon Lematematika, Jerusalem, 1966. (See Math. Comp., v. 23, 1969, pp. 212213, RMT 9.) A new edition is in preparation. MR 0197383 (33:5548)
 [2]
 Marvin Wunderlich, Tables of Fibonacci Entry Points, The Fibonacci Association, San Jose, California, January 1965. (See Math. Comp., v. 20, 1966, pp. 618619, RMT 87.)
 [1]
 M. Lal & P. Gillard, "On the equation ," Math. Comp., v. 26, 1972, pp. 579583. MR 0319391 (47:7935)
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571873997032
PII:
S 00255718(73)997032
Article copyright:
© Copyright 1973
American Mathematical Society
