Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **27** (1973), 437-449

DOI:
https://doi.org/10.1090/S0025-5718-73-99703-2

Full-text PDF Free Access

References | Additional Information

**[1]**Y. L. Luke,*The Special Functions and Their Approximations*, Vols. 1 and 2, Academic Press, New York, 1969.**[1]**Seymour Haber,*Numerical evaluation of multiple integrals*, SIAM Rev.**12**(1970), 481–526. MR**0285119**, https://doi.org/10.1137/1012102**[2]**I. M. Tsobol′,*\cyr Mnogomernye kvadraturnye formuly i funktsii Khaara.*, Izdat. “Nauka”, Moscow, 1969 (Russian). MR**0422968****[3]**I. P. Mysovskih and V. Ja. Černicina,*Answer to a question of Radon*, Dokl. Akad. Nauk SSSR**198**(1971), 537–539 (Russian). MR**0281347****[1]**L. K. Frevel, J. W. Turley & D. R. Petersen,*Seven-Place Table of Iterated Sine*, The Dow Chemical Company, Midland, Michigan, 1959. [See*Math. Comp.*, v. 14, 1960, p. 76, RMT**2**.]**[2]**L. K. Frevel & J. W. Turley,*Seven-Place Table of Iterated*, The Dow Chemical Company, Midland, Michigan, 1960. [See*Math. Comp.*, v. 15, 1961, p. 82, RMT**3**.]**[3]**L. K. Frevel & J. W. Turley,*Tables of Iterated Sine Integral*, The Dow Chemical Company, Midland, Michigan, 1961. [See*Math. Comp.*, v. 16, 1962, p. 119, RMT**8**.]**[4]**L. K. Frevel & J. W. Turley,*Tables of Iterated Bessel Functions of the First Kind*, The Dow Chemical Company, Midland, Michigan, 1962. [See*Math. Comp.*, v. 17, 1963, pp. 471-472, RMT**81**.]**[1]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[2]**M. Godart,*An iterative method for the solution of eigenvalue problems*, Math. Comp.**20**(1966), 399–406. MR**0203928**, https://doi.org/10.1090/S0025-5718-1966-0203928-9**[3]***Circular and hyperbolic functions. Exponential and sine and cosine integrals. Factorial function and allied functions. Hermitian probability functions*, British Association for the Advancement of Science. Mathematical Tables, vol. I, Cambridge, at the University Press, 1951. Prepared by the Committee for the Calculation of Mathematical Tables. 3d ed. MR**0046124****[1]**Milton Abramowitz and Irene A. Stegun (eds.),*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; John Wiley & Sons, Inc., New York, 1984. Reprint of the 1972 edition; Selected Government Publications. MR**757537**

Irene A. Stegun (ed.),*Pocketbook of mathematical functions*, Verlag Harri Deutsch, Thun, 1984. Abridged edition of Handbook of mathematical functions edited by Milton Abramowitz and Irene A. Stegun; Material selected by Michael Danos and Johann Rafelski. MR**768931****[1]**H. E. Fettis & J. C. Caslin,*Elliptic Functions for Complex Arguments*, Report ARL 67-0001, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, January, 1967. See*Math. Comp.*, v. 22, 1968, pp. 230-231.**[2]**F. M. Henderson,*Elliptic functions with complex arguments*, The University of Michigan Press for the University of Michigan Research Institute, Ann Arbor, Mich., 1960. MR**0147675****[1]**Lai K. Chan & N. N. Chan, "Estimates of the parameters of the double exponential distribution based on selected order statistics,"*Bull. Inst. Statist. Res. Training*, v. 3, 1969, pp. 21-40.**[2]**Lai K. Chan, N. N. Chan & E. R. Mead, "Best linear unbiased estimates of the parameters of the logistic distribution based on selected order statistics,"*J. Amer. Statist. Assoc.*, v. 66, 1971, pp. 889-892.**[1]**Dov Jarden,*Recurring sequences: A collection of papers*, Second edition. Revised and enlarged, including numerous new factorizations of Fibonacci and Lucas numbers by John Brillhart, Riveon Lematematika, Jerusalem (Israel), 1966. MR**0197383****[2]**Marvin Wunderlich,*Tables of Fibonacci Entry Points*, The Fibonacci Association, San Jose, California, January 1965. (See*Math. Comp.*, v. 20, 1966, pp. 618-619, RMT**87**.)**[1]**M. Lal and P. Gillard,*On the equation 𝜙(𝑛)=𝜙(𝑛+𝑘)*, Math. Comp.**26**(1972), 579–583. MR**0319391**, https://doi.org/10.1090/S0025-5718-1972-0319391-6

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-73-99703-2

Article copyright:
© Copyright 1973
American Mathematical Society