Computation of Hermite polynomials

Authors:
Laurance C. Eisenhart and George E. Trapp

Journal:
Math. Comp. **27** (1973), 625-632

MSC:
Primary 65D15

DOI:
https://doi.org/10.1090/S0025-5718-1973-0336960-9

MathSciNet review:
0336960

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Projection methods are commonly used to approximate solutions of ordinary and partial differential equations. A basis of the subspace under consideration is needed to apply the projection method. This paper discusses methods of obtaining a basis for piecewise polynomial Hermite subspaces. A simple recursive procedure is derived for generating piecewise Hermite polynomials. These polynomials are then used to obtain approximate solutions of differential equations.

**[1]**G. Birkhoff, M. H. Schultz & R. S. Varga, "Piecewise Hermit interpolation in one and two varables with applications to partial differential equations,"*Numer. Math.*, v. 11, 1968, pp. 232-256. MR**37**#2404. MR**0226817 (37:2404)****[2]**A. Björck & V. Pereyra, "Solution of Vandermonde systems of equations,"*Math. Comp.*, v. 24, 1970, pp. 893-903. MR**44**#7721. MR**0290541 (44:7721)****[3]**H. B. Curry & I. J. Schoenberg, "On Pólya frequency functions. IV: The fundamental spline functions and their limits,"*J. Analyse Math.*, v. 17, 1966, pp. 71-107. MR**36**#1884. MR**0218800 (36:1884)****[4]**G. Galimberti & V. Pereyra, "Solving confluent Vandermonde systems,"*Numer. Math.*, v. 18, 1971, pp. 44-60. MR**0300417 (45:9463)****[5]**J. J. Goel, "Construction of basic functions for numerical utilization of Ritz's method,"*Numer. Math.*, v. 12, 1968, pp. 435-447. MR**41**#1236. MR**0256580 (41:1236)****[6]**S. Gustafson, "Rapid computation of interpolation formulae and mechanical quadrature rules,"*Comm. ACM*, v. 14, 1971, pp. 797-801. MR**0311069 (46:10167a)****[7]**J. W. Jerome & R. S. Varga, "Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems," in*Theory and Applications of Spline Functions*(Proc. Sem. Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968), Academic Press, New York, 1969, pp. 103-155. MR**39**#685. MR**0239328 (39:685)****[8]**J. L. Lavoie & R. Michaud, "Explicit expressions for the determinants of certain matrices,"*Math. Comp.*, v. 24, 1970, pp. 151-154. MR**41**#1760. MR**0257106 (41:1760)****[9]**F. R. Loscalzo,*Numerical Solution of Ordinary Differential Equations by Spline Functions (SPLINDIF)*, Technical Summary Report #842, Mathematics Research Center, U. S. Army, University of Wisconsin, Madison, Wis., 1968.**[10]**F. R. Loscalzo,*On the Use of Spline Functions for the Numerical Solution of Ordinary Differential Equations*, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1968; also in Technical Summary Report #869, Mathematics Research Center, U.S. Army, University of Wisconsin, Madison, Wis., 1968.**[11]**F. R. Loscalzo & I. J. Schoenberg,*On the use of spline functions for the approximation of solutions of ordinary differential equations*, Technical Summary Report #723, Mathematics Research Center, U.S. Army, University of Wisconsin, Madison, Wis., 1967.**[12]**G. Strang, "The finite element method and approximation theory," in*Numerical Solution of Partial Differential Equations*, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 547-583. MR**44**#4926. MR**0287723 (44:4926)****[13]**J. F. Traub, "Associated polynomials and uniform method for the solution of linear problems,"*SIAM Rev.*, v. 8, 1966, pp. 277-301. MR**30**#7054. MR**0207238 (34:7054)****[14]**R. S. Varga, "Hermite interpolation-type Ritz methods for two-point boundary value problems," in*Numerical Solution of Partial Differential Equations*(Proc. Sympos. Univ. Maryland, 1965), Academic Press, New York, 1966, pp. 365-373. MR**34**#5302. MR**0205475 (34:5302)****[15]**R. S. Varga, "Accurate numerical methods for nonlinear boundary value problems," in*Numerical Solution of Field Problems in Continuum Physics*(Proc. Sympos. Appl. Math., Durham, N.C., 1968), SIAM-AMS Proc., vol. II, Amer. Math. Soc., Providence, R.I., 1970, pp. 152-167. MR**42**#2650. MR**0267748 (42:2650)****[16]**K. Yosida,*Functional Analysis*, Die Grundlehren der math. Wissenschaften, Band 123, Academic Press. New York; Springer-Verlag, Berlin, 1965. MR**31**#5054. MR**0180824 (31:5054)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D15

Retrieve articles in all journals with MSC: 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0336960-9

Keywords:
Hermite polynomials,
piecewise polynomials,
projection method

Article copyright:
© Copyright 1973
American Mathematical Society