Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Stability and convergence of difference approximations to pseudo-parabolic partial differential equations


Authors: William H. Ford and T. W. Ting
Journal: Math. Comp. 27 (1973), 737-743
MSC: Primary 65M10
DOI: https://doi.org/10.1090/S0025-5718-1973-0366052-4
MathSciNet review: 0366052
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two difference approximations to the solution of a pseudo-parabolic problem are constructed and shown by means of stability analysis to converge in the "discrete" $ {L_2}$ norm. A relation between parabolic and pseudo-parabolic difference schemes is discussed, and the stability of difference approximations to backward time parabolic and pseudo-parabolic problems is also considered.


References [Enhancements On Off] (What's this?)

  • [1] P. J. Chen & M. E. Gurtin, "On a theory of heat conduction involving two temperatures," J. Appl. Math Phys., v. 19, 1968, pp. 614-627.
  • [2] R. Courant & D. Hilbert, Methoden der Mathematischen Physik. Vol. I, Springer, Berlin, 1931; English transl., Interscience, New York, 1953. MR 16, 426.
  • [3] J. Douglas, Jr., "The application of stability analysis in the numerical solution of quasi-linear parabolic differential equations," Trans. Amer. Math. Soc., v. 89, 1958, pp. 484-518. MR 24 #A1521. MR 0131673 (24:A1521)
  • [4] J. Douglas, Jr., A Survey of Numerical Methods for Parabolic Differential Equations, Advances in Computers, vol. II, Academic Press, New York, 1961, pp. 1-54. MR 25 #5604. MR 0142211 (25:5604)
  • [5] W. H. Ford & T. W. Ting, "Uniform error estimates for difference approximations to non-linear pseudo-parabolic partial differential equations," SIAM J. Numer. Anal. (To appear.) MR 0423833 (54:11807)
  • [6] G. Forsythe & C. B. Moler, Computer Solutions of Linear Algebraic Systems, Prentice-Hall, Englewood Cliffs, N.J., 1967. MR 36 #2306. MR 0219223 (36:2306)
  • [7] H. Gajewski & K. Zacharias, "Zur starken Konvergenz des Galerkinverfahrens bei einer Klasse pseudoparabolischer partieller Differentialgleichungen," Math. Nachr., v. 47, 1970, pp. 365-376. MR 44 #4351. MR 0287144 (44:4351)
  • [8] P. R. Halmos, Finite Dimensional Vector Spaces, 2nd ed., Van Nostrand, Princeton, N.J., 1958. MR 19, 725. MR 0089819 (19:725b)
  • [9] E. Isaacson & H. B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966. MR 34 #924. MR 0201039 (34:924)
  • [10] F. John, "On integration of parabolic equations by difference methods. I. Linear and quasilinear equations for the infinite interval," Comm. Pure Appl. Math., v. 5, 1952, pp. 155-211. MR 13, 947. MR 0047885 (13:947b)
  • [11] P. D. Lax & R. D. Richtmyer, "Survey of the stability of linear finite difference equations," Comm. Pure Appl. Math., v. 9, 1956, pp. 267-293. MR 18, 48. MR 0079204 (18:48c)
  • [12] R. E. Showalter & T. W. Ting, "Pseudoparabolic partial differential equations," SIAM J. Math. Anal., v. 1, 1970, pp. 1-26. MR 0437936 (55:10857)
  • [13] T. W. Ting, "Certain non-steady flows of second-order fluids," Arch. Rational Mech. Anal., v. 14, 1963, pp. 1-26. MR 27 #3224. MR 0153255 (27:3224)
  • [14] T. W. Ting, "Parabolic and pseudo-parabolic partial differential equations," J. Math. Soc. Japan, v. 21, 1969, pp. 440-453. MR 41 #8827. MR 0264231 (41:8827)
  • [15] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 28 #1725. MR 0158502 (28:1725)
  • [16] O. B. Widlund, "On the stability of parabolic difference schemes," Math. Comp., v. 9, 1965, pp. 1-13. MR 30 #717. MR 0170479 (30:717)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M10

Retrieve articles in all journals with MSC: 65M10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1973-0366052-4
Keywords: Stability, difference schemes, pseudo-parabolic equations
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society