Stability and convergence of difference approximations to pseudo-parabolic partial differential equations

Authors:
William H. Ford and T. W. Ting

Journal:
Math. Comp. **27** (1973), 737-743

MSC:
Primary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1973-0366052-4

MathSciNet review:
0366052

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two difference approximations to the solution of a pseudo-parabolic problem are constructed and shown by means of stability analysis to converge in the "discrete" norm. A relation between parabolic and pseudo-parabolic difference schemes is discussed, and the stability of difference approximations to backward time parabolic and pseudo-parabolic problems is also considered.

**[1]**P. J. Chen & M. E. Gurtin, "On a theory of heat conduction involving two temperatures,"*J. Appl. Math Phys.*, v. 19, 1968, pp. 614-627.**[2]**R. Courant & D. Hilbert,*Methoden der Mathematischen Physik*. Vol. I, Springer, Berlin, 1931; English transl., Interscience, New York, 1953. MR**16**, 426.**[3]**J. Douglas, Jr., "The application of stability analysis in the numerical solution of quasi-linear parabolic differential equations,"*Trans. Amer. Math. Soc.*, v. 89, 1958, pp. 484-518. MR**24**#A1521. MR**0131673 (24:A1521)****[4]**J. Douglas, Jr.,*A Survey of Numerical Methods for Parabolic Differential Equations*, Advances in Computers, vol. II, Academic Press, New York, 1961, pp. 1-54. MR**25**#5604. MR**0142211 (25:5604)****[5]**W. H. Ford & T. W. Ting, "Uniform error estimates for difference approximations to non-linear pseudo-parabolic partial differential equations,"*SIAM J. Numer. Anal.*(To appear.) MR**0423833 (54:11807)****[6]**G. Forsythe & C. B. Moler,*Computer Solutions of Linear Algebraic Systems*, Prentice-Hall, Englewood Cliffs, N.J., 1967. MR**36**#2306. MR**0219223 (36:2306)****[7]**H. Gajewski & K. Zacharias, "Zur starken Konvergenz des Galerkinverfahrens bei einer Klasse pseudoparabolischer partieller Differentialgleichungen,"*Math. Nachr.*, v. 47, 1970, pp. 365-376. MR**44**#4351. MR**0287144 (44:4351)****[8]**P. R. Halmos,*Finite Dimensional Vector Spaces*, 2nd ed., Van Nostrand, Princeton, N.J., 1958. MR**19**, 725. MR**0089819 (19:725b)****[9]**E. Isaacson & H. B. Keller,*Analysis of Numerical Methods*, Wiley, New York, 1966. MR**34**#924. MR**0201039 (34:924)****[10]**F. John, "On integration of parabolic equations by difference methods. I. Linear and quasilinear equations for the infinite interval,"*Comm. Pure Appl. Math.*, v. 5, 1952, pp. 155-211. MR**13**, 947. MR**0047885 (13:947b)****[11]**P. D. Lax & R. D. Richtmyer, "Survey of the stability of linear finite difference equations,"*Comm. Pure Appl. Math.*, v. 9, 1956, pp. 267-293. MR**18**, 48. MR**0079204 (18:48c)****[12]**R. E. Showalter & T. W. Ting, "Pseudoparabolic partial differential equations,"*SIAM J. Math. Anal.*, v. 1, 1970, pp. 1-26. MR**0437936 (55:10857)****[13]**T. W. Ting, "Certain non-steady flows of second-order fluids,"*Arch. Rational Mech. Anal.*, v. 14, 1963, pp. 1-26. MR**27**#3224. MR**0153255 (27:3224)****[14]**T. W. Ting, "Parabolic and pseudo-parabolic partial differential equations,"*J. Math. Soc. Japan*, v. 21, 1969, pp. 440-453. MR**41**#8827. MR**0264231 (41:8827)****[15]**R. S. Varga,*Matrix Iterative Analysis*, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR**28**#1725. MR**0158502 (28:1725)****[16]**O. B. Widlund, "On the stability of parabolic difference schemes,"*Math. Comp.*, v. 9, 1965, pp. 1-13. MR**30**#717. MR**0170479 (30:717)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10

Retrieve articles in all journals with MSC: 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0366052-4

Keywords:
Stability,
difference schemes,
pseudo-parabolic equations

Article copyright:
© Copyright 1973
American Mathematical Society