Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Error analysis for direct linear integral equation methods


Author: James L. Phillips
Journal: Math. Comp. 27 (1973), 849-859
MSC: Primary 45L05; Secondary 65R05
DOI: https://doi.org/10.1090/S0025-5718-1973-0374843-9
MathSciNet review: 0374843
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An error analysis of projection methods for solving linear integral equations of the second kind is presented. The relationships between several direct methods for solving integral equations are examined. It is shown that the error analysis given is applicable to other methods, including a modified Nyström method and certain degenerate kernel methods.


References [Enhancements On Off] (What's this?)

  • [1] K. E. Atkinson, "The numerical solution of Fredholm integral equations of the second kind," SIAM J. Numer. Anal., v. 4, 1967, pp. 337-348. MR 36 #7358. MR 0224314 (36:7358)
  • [2] K. E. Atkinson, "A survey of numerical methods for the solution of Fredholm integral equations of the second kind," 1971 Fall National Meeting of SIAM, Madison, Wisconsin (To appear.) MR 0483585 (58:3577)
  • [3] C. R. deBoor, The Method of Projections as Applied to the Numerical Solution of Two Point Boundary Value Problems Using Cubic Splines, Doctoral Thesis, University of Michigan, Ann Arbor, Mich., 1966.
  • [4] C. R. deBoor, "On uniform approximation by splines," J. Approximation Theory, v. 1, 1968, pp. 219-235. MR 39 #1866. MR 0240519 (39:1866)
  • [5] P. J. Davis & P. Rabinowitz, Numerical Integration, Blaisdell, Waltham, Mass., 1967. MR 35 # 2482. MR 0211604 (35:2482)
  • [6] H. Ehlich & K. Zeller, "Auswertung der Normen von Interpolationsoperatoren," Math. Ann., v. 164, 1966, pp. 105-112. MR 33 #3005. MR 0194799 (33:3005)
  • [7] L. Fox & I. B. Parker, Chebyshev Polynomials in Numerical Analysis, Oxford Univ. Press, London, 1968. MR 37 #3733. MR 0228149 (37:3733)
  • [8] Y. Ikebe, "The Galerkin method for numerical solution of Fredholm integral equations of the second kind," SIAM Rev., v. 14, 1972, pp. 465-491. MR 0307515 (46:6635)
  • [9] L. V. Kantorovič & G. P. Akilov, Functional Analysis in Normed Spaces, Fizmatgiz, Moscow, 1959; English transl., Internat. Series of Monographs in Pure and Appl. Math., vol. 46, Macmillan, New York, 1964. MR 22 #9837; MR 35 #4699. MR 0119071 (22:9837)
  • [10] L. V. Kantorovič & V. I. Krylov, Approximate Methods of Higher Analysis, 3rd ed., GITTL, Moscow, 1950; English transl., Interscience, New York; Noordhoff, Groningen, 1958. MR 13, 77; MR 27 #4338. MR 0106537 (21:5268)
  • [11] I. P. Natanson, Constructive Function Theory, GITTL, Moscow, 1949; English transl., Vol. I, Ungar, New York, 1964; Vols. II, III, 1965. MR 11, 591; MR 33 #4529a, b, c. MR 0034464 (11:591c)
  • [12] E. J. Nyström, "Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben," Acta. Math., v. 54, 1930, pp. 185-204. MR 1555306
  • [13] J. L. Phillips, "The use of collocation as a projection method for solving linear operator equations," SIAM J. Numer. Anal., v. 9, 1972, pp. 14-28. MR 0307516 (46:6636)
  • [14] P. M. Prenter, "A method of collocation for the numerical solution of integral equations of the second kind." (To appear.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 45L05, 65R05

Retrieve articles in all journals with MSC: 45L05, 65R05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1973-0374843-9
Keywords: Projection methods, Galerkin method, Nyström method, degenerate kernel methods, Chebyshev expansion, finite-rank operators
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society