On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations

Authors:
A. Prothero and A. Robinson

Journal:
Math. Comp. **28** (1974), 145-162

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1974-0331793-2

MathSciNet review:
0331793

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stiffness in some systems of nonlinear differential equations is shown to be characterized by single stiff equations of the form

*S*-stability property is introduced for this problem, generalizing the concept of

*A*-stability. A set of stiffly accurate one-step methods is identified and the concept of stiff order is defined in the limit . These additional properties are enumerated for several classes of

*A*-stable one-step methods, and are used to predict the behaviour of numerical solutions to stiff nonlinear initial-value problems obtained using such methods. A family of methods based on a compromise between accuracy and stability considerations is recommended for use on practical problems.

**[1]**Germund G. Dahlquist,*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informations-Behandling**3**(1963), 27–43. MR**0170477****[2]**Olof B. Widlund,*A note on unconditionally stable linear multistep methods*, Nordisk Tidskr. Informations-Behandling**7**(1967), 65–70. MR**0215533****[3]**Syvert P. Nørsett,*A criterion for 𝐴(𝛼)-stability of linear multistep methods*, Nordisk Tidskr. Informationsbehandling (BIT)**9**(1969), 259–263. MR**0256571****[4]**C. W. Gear,*The automatic integration of stiff ordinary differential equations.*, Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 187–193. MR**0260180****[5]**Charles E. Treanor,*A method for the numerical integration of coupled first-order differential equations with greatly different time constants*, Math. Comp.**20**(1966), 39–45. MR**0192664**, https://doi.org/10.1090/S0025-5718-1966-0192664-3**[6]**Syvert P. Nørsett,*An 𝐴-stable modification of the Adams-Bashforth methods*, Conf. on Numerical Solution of Differential Equations (Dundee, 1969) Springer, Berlin, 1969, pp. 214–219. MR**0267771****[7]**Byron L. Ehle,*High order 𝐴-stable methods for the numerical solution of systems of D.E.’s*, Nordisk Tidskr. Informationsbehandling (BIT)**8**(1968), 276–278. MR**0239762****[8]**B. L. Ehle,*On Padé Approximations to the Exponential Function and A-Stable Methods for the Numerical Solution of Initial Value Problems*, Report CSRR 2010, University of Waterloo, Department of Applied Analysis and Computer Science, March 1969.**[9]**Owe Axelsson,*A class of 𝐴-stable methods*, Nordisk Tidskr. Informationsbehandling (BIT)**9**(1969), 185–199. MR**0255059****[10]**Owe Axelsson,*A note on a class of strongly 𝐴-stable methods*, Nordisk Tidskr. Informationsbehandling (BIT)**12**(1972), 1–4. MR**0315896****[11]**F. H. Chipman,*𝐴-stable Runge-Kutta processes*, Nordisk Tidskr. Informationsbehandling (BIT)**11**(1971), 384–388. MR**0295582****[12]**F. H. Chipman,*Numerical Solution of Initial Value Problems Using A-Stable Runge-Kutta Processes*, Report CSRR 2042, University of Waterloo, Department of Applied Analysis and Computer Science, June 1971.**[13]**H. A. Watts and L. F. Shampine,*𝐴-stable block implicit one-step methods*, Nordisk Tidskr. Informationsbehandling (BIT)**12**(1972), 252–266. MR**0307483****[14]**M. P. Halstead, A. Prothero & C. P. Quinn, "A mathematical model of the cool-flame oxidation of acetaldehyde,"*Proc. Roy. Soc. London Ser. A*, v. 322, 1971, pp. 377-403.**[15]**J. C. Butcher,*Implicit Runge-Kutta processes*, Math. Comp.**18**(1964), 50–64. MR**0159424**, https://doi.org/10.1090/S0025-5718-1964-0159424-9**[16]**J. H. Seinfeld, L. Lapidus & M. Hwang, "Review of numerical integration techniques for stiff ordinary differential equations,"*Ind. Eng. Chem. Fundamentals*, v. 9, 1970, pp. 266-275.**[17]**A. R. Gourlay,*A note on trapezoidal methods for the solution of initial value problems*, Math. Comp.**24**(1970), 629–633. MR**0275680**, https://doi.org/10.1090/S0025-5718-1970-0275680-3

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0331793-2

Keywords:
Stiff system of ordinary differential equations,
implicit one-step methods,
*A*-stability,
*S*-stability,
stiffly accurate methods,
stiff order

Article copyright:
© Copyright 1974
American Mathematical Society