Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Irregular prime divisors of the Bernoulli numbers


Author: Wells Johnson
Journal: Math. Comp. 28 (1974), 653-657
MSC: Primary 10A40; Secondary 12A35, 12A50
DOI: https://doi.org/10.1090/S0025-5718-1974-0347727-0
MathSciNet review: 0347727
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If p is an irregular prime, $ p < 8000$, then the indices 2n for which the Bernoulli quotients $ {B_{2n}}/2n$ are divisible by $ {p^2}$ are completely characterized. In particular, it is always true that $ 2n > p$ and that $ {B_{2n}}/2n\;\nequiv({B_{2n + p - 1}}/2n + p - 1)\pmod {p^2}$ if (p,2n) is an irregular pair. As a result, we obtain another verification that the cyclotomic invariants $ {\mu _p}$ of Iwasawa all vanish for primes $ p < 8000$.


References [Enhancements On Off] (What's this?)

  • [1] Z. I. Borevič & I. R. Šafarevič, Number Theory, "Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 #1080; MR 33 #4001. MR 0195803 (33:4001)
  • [2] L. Carlitz, "Note on irregular primes," Proc. Amer. Math. Soc., v. 5, 1954, pp. 329-331. MR 15, 778. MR 0061124 (15:778b)
  • [3] K. Iwasawa, "On some invariants of cyclotomic fields," Amer. J. Math., v. 80, 1958, pp. 773-783; erratum, ibid., v. 81, 1959, p. 280. MR 23 #A1631. MR 0124317 (23:A1631)
  • [4] K. Iwasawa & C. Sims, "Computation of invariants in the theory of cyclotomic fields," J. Math. Soc. Japan, v. 18, 1966, pp. 86-96. MR 34 #2560. MR 0202700 (34:2560)
  • [5] W. Johnson, "On the vanishing of the Iwasawa invariant $ {\mu _p}$ for $ p < 8000$," Math. Comp., v. 27, 1973, pp. 387-396. MR 0384748 (52:5621)
  • [6] E. Lehmer, "On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson," Ann. of Math., (2), v. 39, 1938, pp. 350-360. MR 1503412
  • [7] T. Metsänkylä, "Note on the distribution of irregular primes," Ann. Acad. Sci. Fenn. Ser. A.I., v. 492, 1971, 7 pp. MR 43 #168. MR 0274403 (43:168)
  • [8] H. L. Montgomery, "Distribution of irregular primes," Illinois J. Math., v. 9, 1965, pp. 553-558. MR 31 #5861. MR 0181633 (31:5861)
  • [9] F. Pollaczek, "Über die irregulären Kreiskörper der l-ten und $ {l^2}$-ten Einheitswurzeln," Math. Z., No. 21, 1924, pp. 1-38. MR 1544682
  • [10] J. Uspensky & M. Heaslet, Elementary Number Theory, McGraw-Hill, New York, 1939. MR 1, 38.
  • [11] H. S. Vandiver, "Is there an infinity of regular primes?," Scripta Math., v. 21, 1955, pp. 306-309.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10A40, 12A35, 12A50

Retrieve articles in all journals with MSC: 10A40, 12A35, 12A50


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1974-0347727-0
Keywords: Bernoulli numbers, irregular primes, cyclotomic invariants
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society