Stable approximations for hyperbolic systems with moving internal boundary conditions

Authors:
M. Goldberg and S. Abarbanel

Journal:
Math. Comp. **28** (1974), 413-447

MSC:
Primary 65N10

DOI:
https://doi.org/10.1090/S0025-5718-1974-0381343-X

Corrigendum:
Math. Comp. **29** (1975), 1167.

MathSciNet review:
0381343

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The work of Kreiss on the stability theory of difference schemes for the mixed initial boundary value problem for linear hyperbolic systems is extended to deal with the case of the pure initial value problem with an internal boundary. The case of an internal boundary that moves with constant speed *c* is treated, i.e., . In particular, the stability of "hybrid" schemes is studied by using the Lax-Wendroff scheme at points that are not on the internal boundary, while using a first order accurate scheme at the internal boundary points. Numerical evidence is given that the results of the linear stability analysis describes the qualitative behavior of such schemes for nonlinear cases, when the internal boundary is a shock.

**[1]**S. Abarbanel and M. Goldberg,*Numerical solution of quasi-conservative hyperbolic systems—the cylindrical shock problem*, J. Computational Phys.**10**(1972), 1–21. MR**0331974****[2]**S. Abarbanel and G. Zwas,*An iterative finite-difference method for hyperbolic systems*, Math. Comp.**23**(1969), 549–565. MR**0247783**, https://doi.org/10.1090/S0025-5718-1969-0247783-2**[3]**Melvyn Ciment,*Stable matching of difference schemes*, SIAM J. Numer. Anal.**9**(1972), 695–701. MR**0319383**, https://doi.org/10.1137/0709058**[4]**M. Goldberg & S. Abarbanel,*A Note on Discontinuities in a Nonlinear Hyperbolic Equation with Piecewise Smooth Data*, Dept. of Math. Sciences, Tel Aviv Univ. Report, 1972.**[5]**Moshe Goldberg,*A note on the stability of an iterative finite-difference method for hyperbolic systems*, Math. Comp.**27**(1973), 41–44. MR**0341887**, https://doi.org/10.1090/S0025-5718-1973-0341887-2**[6]**Bertil Gustafsson, Heinz-Otto Kreiss, and Arne Sundström,*Stability theory of difference approximations for mixed initial boundary value problems. II*, Math. Comp.**26**(1972), 649–686. MR**0341888**, https://doi.org/10.1090/S0025-5718-1972-0341888-3**[7]**A. Harten and G. Zwas,*Self-adjusting hybrid schemes for shock computations*, J. Computational Phys.**9**(1972), 568–583. MR**0309339****[8]**Heinz-Otto Kreiss,*Difference approximations for the initial-boundary value problem for hyperbolic differential equations*, Numerical Solutions of Nonlinear Differential Equations (Proc. Adv. Sympos., Madison, Wis., 1966) John Wiley & Sons, Inc., New York, 1966, pp. 141–166. MR**0214305****[9]**Heinz-Otto Kreiss,*Stability theory for difference approximations of mixed initial boundary value problems. I*, Math. Comp.**22**(1968), 703–714. MR**0241010**, https://doi.org/10.1090/S0025-5718-1968-0241010-7**[10]**Peter D. Lax,*Weak solutions of nonlinear hyperbolic equations and their numerical computation*, Comm. Pure Appl. Math.**7**(1954), 159–193. MR**0066040**, https://doi.org/10.1002/cpa.3160070112**[11]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774**, https://doi.org/10.1002/cpa.3160130205**[12]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N10

Retrieve articles in all journals with MSC: 65N10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0381343-X

Article copyright:
© Copyright 1974
American Mathematical Society