A continued fraction expansion, with a truncation error estimate, for Dawson's integral

Author:
J. H. McCabe

Journal:
Math. Comp. **28** (1974), 811-816

MSC:
Primary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1974-0371020-3

MathSciNet review:
0371020

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A continued fraction expansion for Dawson's integral is considered and an estimate of the truncation errors of the convergents of this continued fraction is provided. The continued fraction is shown to provide a sequence of rational approximations to the integral which have good convergence for both small and large values of the argument.

**[1]**W. J. Cody, Kathleen A. Paciorek, and Henry C. Thacher Jr.,*Chebyshev approximations for Dawson’s integral*, Math. Comp.**24**(1970), 171–178. MR**0258236**, https://doi.org/10.1090/S0025-5718-1970-0258236-8**[2]**H. G. Dawson,"On the numerical value of ,"*Proc. London Math. Soc.*, v. 29, 1898, pp. 519-522.**[3]**Wyman Fair,*Padé approximation to the solution of the Ricatti equation*, Math. Comp.**18**(1964), 627–634. MR**0169380**, https://doi.org/10.1090/S0025-5718-1964-0169380-5**[4]**David G. Hummer,*Expansion of Dawson’s function in a series of Chebyshev polynomials*, Math. Comp.**18**(1964), 317–319. MR**0165687**, https://doi.org/10.1090/S0025-5718-1964-0165687-6**[5]**E. Laguerre, "Sur le réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels,"*J. Math. Pures Appl.*, v. 1, 1885.**[6]**Bengt Lohmander and Stig Rittsten,*Table of the function 𝑦=𝑒^{-𝑥²}∫^{𝑥}₀𝑒^{𝑡²}𝑑𝑡*, Kungl. Fysiogr. Sällsk. i Lund Förh.**28**(1958), 45–52. MR**0094919****[7]**Yudell L. Luke,*The Padé table and the 𝜏-method*, J. Math. and Phys.**37**(1958), 110–127. MR**0099114**, https://doi.org/10.1002/sapm1958371110**[8]**J. H. McCabe,*Continued Fraction Methods With Applications to First Order Ordinary Differential Equations*, Ph D. Thesis, Brunel University, 1971.**[9]**J. H. McCabe, "An extension of the Padé table to include two point Padé approximations" (To appear.)**[10]**J. H. McCabe & J. A. Murphy, "Continued fraction expansions about two points" (To appear.)**[11]**J. A. Murphy,*Rational Approximations to the Error Function*, Internal project, Brunel University, 1966.**[12]**H. C. Thacher,*Computation of the Complex Error Function by Continued Fractions*, Blanch Anniversary volume, B. Mond (editor), Aerospace Research Laboratories, Washington, D. C.**[13]**P. Wynn,*The numerical efficiency of certain continued fraction expansions. IA*, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math.**24**(1962), 127–137. MR**0139254**

P. Wynn,*The numerical efficiency of certain continued fraction expansions. IB*, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math.**24**(1962), 138–148 l. MR**0139255****[14]**P. Wynn,*Converging factors for continued fractions. I, II*, Numer. Math.**1**(1959), 272–320. MR**0116158**, https://doi.org/10.1007/BF01386391

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0371020-3

Article copyright:
© Copyright 1974
American Mathematical Society