Inversion of Toeplitz band matrices
Author:
William F. Trench
Journal:
Math. Comp. 28 (1974), 10891095
MSC:
Primary 65F05
MathSciNet review:
0347066
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An algorithm for inverting Toeplitz matrices is simplified for Toeplitz band matrices. In some cases, the simplification yields formulas for the elements in the first row and column of the inverse, from which the remaining elements can be easily calculated. Two examples are given. In any case, the simplification yields a recursive method for computing the first row and column of the inverse of an nth order Toeplitz band matrix with operations, where are required with the more general algorithm.
 [1]
Hirotugu
Akaike, Block Toeplitz matrix inversion, SIAM J. Appl. Math.
24 (1973), 234–241. MR 0362864
(50 #15302)
 [2]
Erwin
H. Bareiss, Numerical solution of linear equations with Toeplitz
and vector Toeplitz matrices, Numer. Math. 13 (1969),
404–424. MR 0255027
(40 #8234)
 [3]
W.
D. Hoskins and P.
J. Ponzo, Some properties of a class of band
matrices, Math. Comp. 26 (1972), 393–400. MR 0303703
(46 #2839), http://dx.doi.org/10.1090/S00255718197203037033
 [4]
Lars
Rehnqvist, Inversion of certain symmetric band matrices,
Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972),
90–98. MR
0311087 (46 #10183)
 [5]
William
F. Trench, An algorithm for the inversion of finite Toeplitz
matrices, J. Soc. Indust. Appl. Math. 12 (1964),
515–522. MR 0173681
(30 #3891)
 [6]
William
F. Trench, On the extrapolation of a special class of stationary
time series, Ann. Math. Statist. 36 (1965),
1426–1432. MR 0185783
(32 #3244)
 [7]
William
F. Trench, Weighting coefficients for the prediction of stationary
time series from the finite past, SIAM J. Appl. Math.
15 (1967), 1502–1510. MR 0225458
(37 #1051)
 [8]
Shalhav
Zohar, Toeplitz matrix inversion: The algoritm of W. F.
Trench, J. Assoc. Comput. Mach. 16 (1969),
592–601. MR 0247762
(40 #1023)
 [1]
 H. AKAIKE, "Block Toeplitz matrix inversion," SIAM J. Appl. Math., v. 24, 1973, pp. 234241. MR 0362864 (50:15302)
 [2]
 E. H. BAREISS, "Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices," Numer. Math. v. 13, 1969, pp. 404424. MR 40 #8234. MR 0255027 (40:8234)
 [3]
 W. D. HOSKINS & P. J. PONZO, "Some properties of a class of band matrices," Math. Comp., v. 26, 1972, pp. 393400. MR 46 #2839. MR 0303703 (46:2839)
 [4]
 L. REHNQVIST, "Inversion of certain symmetric band matrices," Nordisk Tidskr. Informationsbehandling (BIT), v. 12, 1972, pp. 9098. MR 46 #10183. MR 0311087 (46:10183)
 [5]
 W. F. TRENCH, "An algorithm for the inversion of finite Toeplitz matrices," J. Soc. Indust. Appl. Math., v. 12, 1964, pp. 515522. MR 30 #3891. MR 0173681 (30:3891)
 [6]
 W. F. TRENCH, "On the extrapolation of a special class of stationary time series," Ann. Math. Statist., v. 36, 1965, pp. 14261432. MR 32 #3244. MR 0185783 (32:3244)
 [7]
 W. F. TRENCH, "Weighting coefficients for the prediction of stationary time series from the finite past," SIAM J. Appl Math., v. 15, 1967, pp. 15021510. MR 37 #1051. MR 0225458 (37:1051)
 [8]
 S. ZOHAR, "Toeplitz matrix inversion: the algorithm of W. F. Trench," J. Assoc. Comput. Mach., v. 16, 1967, pp. 592601. MR 40 #1023. MR 0247762 (40:1023)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65F05
Retrieve articles in all journals
with MSC:
65F05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197403470668
PII:
S 00255718(1974)03470668
Keywords:
Toeplitz matrix,
band matrix,
inversion
Article copyright:
© Copyright 1974
American Mathematical Society
