Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Interior estimates for Ritz-Galerkin methods


Authors: Joachim A. Nitsche and Alfred H. Schatz
Journal: Math. Comp. 28 (1974), 937-958
MSC: Primary 65N30; Secondary 35JXX
DOI: https://doi.org/10.1090/S0025-5718-1974-0373325-9
MathSciNet review: 0373325
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Interior a priori error estimates in Sobolev norms are derived from interior Ritz-Galerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on both uniform and nonuniform meshes. It is shown that the error in an interior domain $ \Omega $ can be estimated with the best order of accuracy that is possible locally for the subspaces used plus the error in a weaker norm over a slightly larger domain which measures the effects from outside of the domain $ \Omega $. Additional results are given in the case when the subspaces are defined on a uniform mesh. Applications to specific boundary value problems are given.


References [Enhancements On Off] (What's this?)

  • [1] S. AGMON, Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Studies, no. 2, Van Nostrand, Princeton, N. J., 1965. MR 31 #2504. MR 0178246 (31:2504)
  • [2] J. P. AUBIN, "Approximation des problèmes aux limites non homogènes et régularité de la convergence," Calcolo, v. 6, 1969, pp. 117--139.
  • [3] I. BABUŠKA, The Finite Element Method with Lagrangian Multipliers, Technical Note BN-724, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College Park, Md., 1972.
  • [4] I. BABUŠKA, Numerical Solution of Boundary Value Problems by the Perturbed Variational Principle, Technical Note BN-624, University of Maryland, College Park, Md., 1969.
  • [5] JU. M. BEREZANSKIĬ, Expansions in Eigenfunctions of Selfadjoint Operators, "Naukova Dumka", Kiev, 1965; English transl., Transl. Math. Monographs, vol. 17, Amer. Math. Soc., Providence, R. I., 1968. MR 36 #5768; #5769. MR 0222718 (36:5768)
  • [6] J. H. BRAMBLE & S. HILBERT, "Bounds for a class of linear functional with applications to Hermite interpolation," Numer. Math., v. 16, 1971, pp. 362-369. MR 44 #7704. MR 0290524 (44:7704)
  • [7] J. H. BRAMBLE & J. E. OSBORN, "Rate of convergence estimates for non-selfadjoint eigenvalue approximations," Math. Comp., v. 27, 1973, pp. 525-550. MR 0366029 (51:2280)
  • [8] J. H. BRAMBLE & M. ZLÁMAL, "Triangular elements in the finite element method," Math. Comp., v. 24, 1970, pp. 809-820. MR 43 #8250. MR 0282540 (43:8250)
  • [9] R. B. KELLOGG, "Higher order singularities for interface problems," Proceedings of Conference on The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (edited by A. K. Aziz), Academic Press, New York, 1972, pp. 589-602. MR 0433926 (55:6896)
  • [10] R. B. KELLOGG, Interpolation Between Subspaces of a Hilbert Space, Technical Note BN-719, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College Park, Md., 1972.
  • [11] J. L. LIONS & E. MAGENES, Problème aux limites non homogènes et applications, Vol. 1, Travaux et Recherches Mathématiques, no. 17, Dunod, Paris, 1968. MR 40 #512. MR 0247243 (40:512)
  • [12] J. A. NITSCHE, "Über ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind," Abh. Math. Sem. Univ. Hamburg, v. 36, 1971, pp. 9-15. MR 0341903 (49:6649)
  • [13] J. A. NITSCHE, "A projection method for Dirichlet-problems using subspaces with nearly zero boundary conditions," Proceedings of Conference on The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (edited by A. K. Aziz), Academic Press, New York, 1972, pp. 603-627. MR 0426456 (54:14399)
  • [14] J. A. NITSCHE, "Umkehrsätze für Spline Approximationen," Compositio Math., v. 21, 1969, pp. 400-416. MR 41 #4074. MR 0259436 (41:4074)
  • [15] J. A. NITSCHE, "Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens," Numer. Math., v. 11, 1968, pp. 346-348. MR 38 #1823. MR 0233502 (38:1823)
  • [16] J. A. NITSCHE, "Interior error estimates for projection methods," Proceedings of the Czechoslovak Conference on Differential Equations and Their Applications, Brno 1972. MR 0359361 (50:11815)
  • [17] J. A. NITSCHE & A. H. SCHATZ, "On local approximation properties of $ {L_2}$ projections on spline subspaces," Applicable Anal., v. 2, 1972, pp. 161-168. MR 0397268 (53:1127)
  • [18] L. SERBIN, A Computational Investigation of Least Squares and Other Projection Methods for the Approximate Solution of Boundary Value Problems, Doctoral Thesis, Cornell University, Ithaca, N. Y., 1971.
  • [19] I. J. SCHOENBERG, Approximation with Special Emphasis on Spline Functions, Academic Press, New York, 1969. MR 40 #4638. MR 0251408 (40:4638)
  • [20] V. THOMÉE & B. WESTERGREN, "Elliptic difference equations and interior regularity," Numer. Math., v. 11, 1968, pp. 196-210. MR 36 #7347. MR 0224303 (36:7347)
  • [21] V. THOMÉE, "Discrete interior Schauder estimates for elliptic difference operators," SIAM J. Numer. Anal., v. 5, 1968, pp. 626-645. MR 38 #6781. MR 0238505 (38:6781)
  • [22] M. ZLÁMAL, "A Finite element procedure of second order accuracy," Numer. Math., v. 14, 1969/70, pp. 394-402. MR 41 #1233. MR 0256577 (41:1233)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 35JXX

Retrieve articles in all journals with MSC: 65N30, 35JXX


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1974-0373325-9
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society