A variable order finite difference method for nonlinear multipoint boundary value problems
Authors:
M. Lentini and V. Pereyra
Journal:
Math. Comp. 28 (1974), 9811003
MSC:
Primary 65L10
MathSciNet review:
0386281
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An adaptive finite difference method for first order nonlinear systems of ordinary differential equations subject to multipoint nonlinear boundary conditions is presented. The method is based on a discretization studied earlier by H. B. Keller. Variable order is provided through deferred corrections, while a builtin natural asymptotic estimator is used to automatically refine the mesh in order to achieve a required tolerance. Extensive numerical experimentation and a FORTRAN program are included.
 [1]
A.
C. Allison, The numerical solution of coupled differential
equations arising from the Schrödinger equation, J. Computational
Phys. 6 (1970), 378–391. MR 0275685
(43 #1438)
 [2]
P.
G. Ciarlet, M.
H. Schultz, and R.
S. Varga, Numerical methods of highorder accuracy for nonlinear
boundary value problems. I. One dimensional problem, Numer. Math.
9 (1966/1967), 394–430. MR 0221761
(36 #4813)
 [3]
J.
C. Falkenberg, A method for integration of unstable systems of
ordinary differential equation subject to twopoint boundary
conditions, Nordisk Tidskr. Informationsbehandling (BIT)
8 (1968), 86–103. MR 0239766
(39 #1123)
 [4]
Peter
Henrici, Discrete variable methods in ordinary differential
equations, John Wiley & Sons, Inc., New YorkLondon, 1962. MR 0135729
(24 #B1772)
 [5]
R.
J. Herbold, M.
H. Schultz, and R.
S. Varga, The effect of quadrature errors in the numerical solution
of boundary value problems by variational techniques, Aequationes
Math. 3 (1969), 247–270. MR 0261798
(41 #6410)
 [6]
James
F. Holt, Numerical solution of nonlinear twopoint boundary
problems by finite difference methods, Comm. ACM 7
(1964), 366–373. MR 0168123
(29 #5387)
 [7]
J.
W. Jerome and R.
S. Varga, Generalizations of spline functions and applications to
nonlinear boundary value and eigenvalue problems, Theory and
Applications of Spline Functions (Proceedings of Seminar, Math. Research
Center, Univ. of Wisconsin, Madison, Wis., 1968) Academic Press, New
York, 1969, pp. 103–155. MR 0239328
(39 #685)
 [8]
Herbert
B. Keller, Numerical methods for twopoint boundaryvalue
problems, Blaisdell Publishing Co. Ginn and Co., Waltham,
Mass.Toronto, Ont.London, 1968. MR 0230476
(37 #6038)
 [9]
Herbert
B. Keller, Accurate difference methods for linear ordinary
differential systems subject to linear constraints, SIAM J. Numer.
Anal. 6 (1969), 8–30. MR 0253562
(40 #6776)
 [10]
Herbert
B. Keller, A new difference scheme for parabolic problems,
Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970)
(Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic
Press, New York, 1971, pp. 327–350. MR 0277129
(43 #2866)
 [11]
Herbert
B. Keller, Accurate difference methods for nonlinear twopoint
boundary value problems, SIAM J. Numer. Anal. 11
(1974), 305–320. MR 0351098
(50 #3589)
 [12]
Milton
Lees, Discrete methods for nonlinear twopoint boundary value
problems, Numerical Solution of Partial Differential Equations (Proc.
Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966,
pp. 59–72. MR 0202323
(34 #2196)
 [13]
M. LENTINI, Correcciones diferidas para problemas de contorno en sistemas de ecuaciones diferenciales ordinarias de primer orden, Pub. 7304, Depto. de Comp., Fac. Ciencias, Univ. Central de Venezuela, Caracas, 1973.
 [14]
J.
M. Ortega and W.
C. Rheinboldt, Iterative solution of nonlinear equations in several
variables, Academic Press, New YorkLondon, 1970. MR 0273810
(42 #8686)
 [15]
M.
R. Osborne, On shooting methods for coundary value problems,
J. Math. Anal. Appl. 27 (1969), 417–433. MR 0245209
(39 #6521)
 [16]
Victor
Pereyra, Iterated deferred corrections for nonlinear operator
equations, Numer. Math. 10 (1967), 316–323. MR 0221760
(36 #4812)
 [17]
Victor
Pereyra, Iterated deferred corrections for nonlinear boundary value
problems, Numer. Math. 11 (1968), 111–125. MR 0225498
(37 #1091)
 [18]
Victor
Pereyra, Highly accurate numerical solution of
casilinear elliptic boundaryvalue problems in 𝑛
dimensions, Math. Comp. 24 (1970), 771–783. MR 0288970
(44 #6165), http://dx.doi.org/10.1090/S00255718197002889705
 [19]
V. PEREYRA, High Order Finite Difference Solution of Differential Equations, Stanford Univ. Comp. Sci. Report STANCS73348, 1973.
 [20]
Victor
Pereyra, Variable order variable step finite difference methods for
nonlinear boundary value problems, Conference on the Numerical
Solution of Differential Equations (Univ. Dundee, Dundee, 1973) Springer,
Berlin, 1974, pp. 118–133. Lecture Notes in Math., Vol. 363. MR 0458918
(56 #17117)
 [21]
F.
M. Perrin, H.
S. Price, and R.
S. Varga, On higherorder numerical methods for nonlinear twopoint
boundary value problems, Numer. Math. 13 (1969),
180–198. MR 0255069
(40 #8276)
 [22]
S.
M. Roberts and J.
S. Shipman, The Kantorovich theorem and twopoint boundary value
problems, IBM J. Res. Develop. 10 (1966),
402–406. MR 0202325
(34 #2198)
 [23]
S.
M. Roberts, J.
S. Shipman, and W.
J. Ellis, A perturbation technique for nonlinear twopoint boundary
value problems, SIAM J. Numer. Anal. 6 (1969),
347–358. MR 0255070
(40 #8277)
 [24]
Josef
Stoer and Roland
Bulirsch, Einführung in die Numerische Mathematik. II,
SpringerVerlag, BerlinNew York, 1973. Unter Berücksichtigung von
Vorlesungen von F. L. Bauer; Heidelberger Taschenbücher, Band 114. MR 0400617
(53 #4448)
 [25]
J.
M. Varah, On the solution of blocktridiagonal
systems arising from certain finitedifference equations, Math. Comp. 26 (1972), 859–868. MR 0323087
(48 #1445), http://dx.doi.org/10.1090/S00255718197203230874
 [1]
 A. C. ALLISON, "The numerical solution of coupled differential equations arising from the Schrödinger equation," J. Computational Phys., v. 6, 1970, pp. 378391. MR 43 #1438. MR 0275685 (43:1438)
 [2]
 P. G. CIARLET, M. H. SCHULTZ & R. S. VARGA, "Numerical methods of highorder accuracy for nonlinear boundary value problems. I. One dimensional problem," Numer. Math., v. 9, 1967, pp. 394430. MR 36 #4813. MR 0221761 (36:4813)
 [3]
 J. C. FALKENBERG, "A method for integration of unstable systems of ordinary differential equations subject to twopoint boundary conditions," Nordisk Tidskr. Informationsbehandling (BIT), v. 8, 1968, pp. 86103. MR 39 #1123. MR 0239766 (39:1123)
 [4]
 P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962. MR 24 #B1772. MR 0135729 (24:B1772)
 [5]
 R. J. HERBOLD, M. H. SCHULTZ & R. S. VARGA, "The effect of quadrature errors in the numerical solution of boundary value problems by variational techniques," Aequationes Math., v. 3, 1969, pp. 247270. MR 41 #6410. MR 0261798 (41:6410)
 [6]
 J. F. HOLT, "Numerical solution of nonlinear twopoint boundary value problems by finite difference methods," Comm. ACM, v. 7, 1964, pp. 366373. MR 29 #5387. MR 0168123 (29:5387)
 [7]
 J. W. JEROME & R. S. VARGA, "Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems," Theory and Applications of Spline Functions (edited by T. N. E. Greville), (Proc. Sem. Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968), Academic Press, New York, 1969, pp. 103155. MR 39 #685, MR 0239328 (39:685)
 [8]
 H. B. KELLER, Numerical Methods for TwoPoint BoundaryValue Problems, Blaisdell, Waltham, Mass., 1968. MR 37 #6038. MR 0230476 (37:6038)
 [9]
 H. B. KELLER, "Accurate difference methods for linear ordinary differential systems subject to linear constraints," SIAM J. Numer. Anal., v. 6, 1969, pp. 830. MR 40 #6776. MR 0253562 (40:6776)
 [10]
 H. B. KELLER, "A new difference scheme for parabolic problems," Numerical Solution of Partial Differential Equations, II (edited by B. Hubbard) (SYNSPADE, 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 327350. MR 43 #2866. MR 0277129 (43:2866)
 [11]
 H. B. KELLER, "Accurate difference methods for nonlinear twopoint boundary value problems," (manuscript, 1972). MR 0351098 (50:3589)
 [12]
 M. LEES, "Discrete methods for nonlinear twopoint boundary value problems," Numerical Solution of Partial Differential Equations (edited by J. H. Bramble) (Proc. Sympos. Univ. Maryland, 1965), Academic Press, New York, 1966, pp. 5972. MR 34 #2196. MR 0202323 (34:2196)
 [13]
 M. LENTINI, Correcciones diferidas para problemas de contorno en sistemas de ecuaciones diferenciales ordinarias de primer orden, Pub. 7304, Depto. de Comp., Fac. Ciencias, Univ. Central de Venezuela, Caracas, 1973.
 [14]
 J. M. ORTEGA & W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. MR 42 #8686. MR 0273810 (42:8686)
 [15]
 M. R. OSBORNE, "On shooting methods for boundary value problems," J. Math. Anal. Appl., v. 27, 1969, pp. 417433. MR 39 #6521. MR 0245209 (39:6521)
 [16]
 V. PEREYRA, "Iterated deferred corrections for nonlinear operator equations," Numer. Math., v. 10, 1967, pp. 316323. MR 36 #4812. MR 0221760 (36:4812)
 [17]
 V. PEREYRA, "Iterated deferred corrections for nonlinear boundary value problems," Numer. Math., v. 11, 1968, pp. 111125. MR 37#1091. MR 0225498 (37:1091)
 [18]
 V. PEREYRA, "Highly accurate numerical solution of casilinear elliptic boundary value problems in n dimensions," Math. Comp., v. 24, 1970, pp. 771783. MR 44 #6165. MR 0288970 (44:6165)
 [19]
 V. PEREYRA, High Order Finite Difference Solution of Differential Equations, Stanford Univ. Comp. Sci. Report STANCS73348, 1973.
 [20]
 V. PEREYRA, "Variable order variable step finite difference methods for nonlinear boundary value problems," Proceedings Conference on the Numerical Solution of Differential Equations, Dundee, Scotland, SpringerVerlag, Berlin, 1973. MR 0458918 (56:17117)
 [21]
 F. M. PERRIN, H. S. PRICE & R. S. VARGA, "On higherorder numerical methods for nonlinear twopoint boundary value problems," Numer. Math., v. 13, 1969, pp. 180198. MR 40 #8276. MR 0255069 (40:8276)
 [22]
 S. M. ROBERTS & J. S. SHIPMAN, "The Kantorovich theorem and twopoint boundary value problems," IBM J. Res. Develop., v. 10, 1966, pp. 402406. MR 34 #2198. MR 0202325 (34:2198)
 [23]
 S. M. ROBERTS, J. S. SHIPMAN & W. J. ELLIS, "A perturbation technique for nonlinear twopoint boundary value problems," SIAM J. Numer. Anal., v. 6, 1969, pp. 347358. MR 40 #8277. MR 0255070 (40:8277)
 [24]
 J. STOER & R. BULIRSCH, Einführung in die Numerische Mathematik II, SpringerVerlag, Berlin, 1973. MR 0400617 (53:4448)
 [25]
 J. VARAH, On the Solution of Block Tridiagonal Systems Arising from Certain FiniteDifference Equations, Univ. British Columbia, Dept. Comp. Sci. Technical Report 7202, 1972. MR 0323087 (48:1445)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L10
Retrieve articles in all journals
with MSC:
65L10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197403862814
PII:
S 00255718(1974)03862814
Keywords:
Adaptive finite difference method,
variable order method,
nonlinear multipoint boundary value problem,
first order systems boundary problem
Article copyright:
© Copyright 1974
American Mathematical Society
