Irregular primes and cyclotomic invariants

Author:
Wells Johnson

Journal:
Math. Comp. **29** (1975), 113-120

MSC:
Primary 12A35; Secondary 10A40, 10B15

DOI:
https://doi.org/10.1090/S0025-5718-1975-0376606-9

MathSciNet review:
0376606

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The table of irregular primes less than 30000 has been computed and deposited in the UMT file. The fraction of irregular primes in this range is 0.3924, close to the heuristic prediction of . Fermat's Last Theorem has been verified for all prime exponents , and the cyclotomic invariants , and of Iwasawa have been completely determined for these primes. The computations show that for *p* in this range, and the invariants and both equal the index of irregularity of *p*.

**[1]**A. I. Borevich and I. R. Shafarevich,*Number theory*, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR**0195803****[2]**L. E. DICKSON,*History of the Theory of Numbers*. Vol. II, Carnegie Institution of Wash., Washington, D. C., 1920.**[3]**A. FRIEDMANN & J. TAMARKINE, "Quelques formules conçernant la théorie de la fonction [*x*] et des nombres de Bernoulli,"*J. Reine Angew. Math.*, v. 135, 1909, pp. 146-156.**[4]**Kenkichi Iwasawa,*On Γ-extensions of algebraic number fields*, Bull. Amer. Math. Soc.**65**(1959), 183–226. MR**0124316**, https://doi.org/10.1090/S0002-9904-1959-10317-7**[5]**Kenkichi Iwasawa,*On the 𝜇-invariants of cyclotomic fields*, Acta Arith.**21**(1972), 99–101. MR**0302606**, https://doi.org/10.4064/aa-21-1-99-101**[6]**K. IWASAWA,*Lecture Notes of a Course at Princeton*, Fall semester, 1971.**[7]**Kenkichi Iwasawa and Charles C. Sims,*Computation of invariants in the theory of cyclotomic fields*, J. Math. Soc. Japan**18**(1966), 86–96. MR**0202700**, https://doi.org/10.2969/jmsj/01810086**[8]**Wells Johnson,*On the vanishing of the Iwasawa invariant 𝜇_{𝑝} for 𝑝<8000*, Math. Comp.**27**(1973), 387–396. MR**0384748**, https://doi.org/10.1090/S0025-5718-1973-0384748-5**[9]**Wells Johnson,*Irregular prime divisors of the Bernoulli numbers*, Math. Comp.**28**(1974), 653–657. MR**0347727**, https://doi.org/10.1090/S0025-5718-1974-0347727-0**[10]**V. V. Kobelev,*A proof of Fermat’s theorem for all prime ewponents less that 5500.*, Dokl. Akad. Nauk SSSR**190**(1970), 767–768 (Russian). MR**0258717****[11]**D. H. LEHMER, "Automation and pure mathematics" in*Applications of Digital Computers*, W. F. Freiberger and W. Prager, editors, Ginn, Boston, Mass., 1963.**[12]**D. H. Lehmer, Emma Lehmer, and H. S. Vandiver,*An application of high-speed computing to Fermat’s last theorem*, Proc. Nat. Acad. Sci. U. S. A.**40**(1954), 25–33. MR**0061128****[13]**Tauno Metsänkylä,*Note on the distribution of irregular primes*, Ann. Acad. Sci. Fenn. Ser. A I No.**492**(1971), 7. MR**0274403****[14]**T. Metsänkylä,*Class numbers and 𝜇-invariants of cyclotomic fields*, Proc. Amer. Math. Soc.**43**(1974), 299–300. MR**0332721**, https://doi.org/10.1090/S0002-9939-1974-0332721-8**[15]**Tauno Metsänkylä,*Distribution of irregular prime numbers*, J. Reine Angew. Math.**282**(1976), 126–130. MR**0399014**, https://doi.org/10.1515/crll.1976.282.126**[16]**Hugh L. Montgomery,*Distribution of irregular primes*, Illinois J. Math.**9**(1965), 553–558. MR**0181633****[17]**J. L. Selfridge, C. A. Nicol, and H. S. Vandiver,*Proof of Fermat’s last theorem for all prime exponents less than 4002*, Proc. Nat. Acad. Sci. U.S.A.**41**(1955), 970–973. MR**0072892****[18]**J. L. SELFRIDGE & B. W. POLLACK, "Fermat's last theorem is true for any exponent up to 25,000,"*Notices Amer. Math. Soc.*, v. 11, 1964, p. 97. Abstract #608-138.**[19]**Carl Ludwig Siegel,*Zu zwei Bemerkungen Kummers*, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II**1964**(1964), 51–57 (German). MR**0163899****[20]**H. S. VANDIVER, "On Kummer's memoir of 1857 concerning Fermat's last theorem,"*Proc. Nat. Acad. Sci U.S.A.*, v. 6, 1920, pp. 266-269.**[21]**H. S. VANDIVER, "On the class number of the field and the second case of Fermat's last theorem,"*Proc. Nat. Acad. Sci. U.S.A.*, v. 6, 1920, pp. 416-421.**[22]**H. S. Vandiver,*On Fermat’s last theorem*, Trans. Amer. Math. Soc.**31**(1929), no. 4, 613–642. MR**1501503**, https://doi.org/10.1090/S0002-9947-1929-1501503-0**[23]**H. S. Vandiver,*On Bernoulli’s numbers and Fermat’s last theorem*, Duke Math. J.**3**(1937), no. 4, 569–584. MR**1546011**, https://doi.org/10.1215/S0012-7094-37-00345-4**[24]**H. S. Vandiver,*Examination of methods of attack on the second case of Fermat’s last theorem*, Proc. Nat. Acad. Sci. U. S. A.**40**(1954), 732–735. MR**0062758****[25]**H. S. Vandiver,*On developments in an arithmetic theory of the Bernoulli and allied numbers*, Scripta Math.**25**(1961), 273–303. MR**0142497**

Retrieve articles in *Mathematics of Computation*
with MSC:
12A35,
10A40,
10B15

Retrieve articles in all journals with MSC: 12A35, 10A40, 10B15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0376606-9

Keywords:
Irregular primes,
Bernoulli numbers,
Fermat's Last Theorem,
cyclotomic fields,
class numbers,
-extensions,
cyclotomic invariants

Article copyright:
© Copyright 1975
American Mathematical Society