Irregular primes and cyclotomic invariants
Author:
Wells Johnson
Journal:
Math. Comp. 29 (1975), 113120
MSC:
Primary 12A35; Secondary 10A40, 10B15
MathSciNet review:
0376606
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The table of irregular primes less than 30000 has been computed and deposited in the UMT file. The fraction of irregular primes in this range is 0.3924, close to the heuristic prediction of . Fermat's Last Theorem has been verified for all prime exponents , and the cyclotomic invariants , and of Iwasawa have been completely determined for these primes. The computations show that for p in this range, and the invariants and both equal the index of irregularity of p.
 [1]
A.
I. Borevich and I.
R. Shafarevich, Number theory, Translated from the Russian by
Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press,
New YorkLondon, 1966. MR 0195803
(33 #4001)
 [2]
L. E. DICKSON, History of the Theory of Numbers. Vol. II, Carnegie Institution of Wash., Washington, D. C., 1920.
 [3]
A. FRIEDMANN & J. TAMARKINE, "Quelques formules conçernant la théorie de la fonction [x] et des nombres de Bernoulli," J. Reine Angew. Math., v. 135, 1909, pp. 146156.
 [4]
Kenkichi
Iwasawa, On Γextensions of algebraic
number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226.
MR
0124316 (23 #A1630), http://dx.doi.org/10.1090/S000299041959103177
 [5]
Kenkichi
Iwasawa, On the 𝜇invariants of cyclotomic fields,
Acta Arith. 21 (1972), 99–101. MR 0302606
(46 #1750)
 [6]
K. IWASAWA, Lecture Notes of a Course at Princeton, Fall semester, 1971.
 [7]
Kenkichi
Iwasawa and Charles
C. Sims, Computation of invariants in the theory of cyclotomic
fields, J. Math. Soc. Japan 18 (1966), 86–96.
MR
0202700 (34 #2560)
 [8]
Wells
Johnson, On the vanishing of the Iwasawa
invariant 𝜇_{𝑝} for 𝑝<8000, Math. Comp. 27 (1973), 387–396. MR 0384748
(52 #5621), http://dx.doi.org/10.1090/S00255718197303847485
 [9]
Wells
Johnson, Irregular prime divisors of the
Bernoulli numbers, Math. Comp. 28 (1974), 653–657. MR 0347727
(50 #229), http://dx.doi.org/10.1090/S00255718197403477270
 [10]
V.
V. Kobelev, A proof of Fermat’s theorem for all prime
ewponents less that 5500., Dokl. Akad. Nauk SSSR 190
(1970), 767–768 (Russian). MR 0258717
(41 #3363)
 [11]
D. H. LEHMER, "Automation and pure mathematics" in Applications of Digital Computers, W. F. Freiberger and W. Prager, editors, Ginn, Boston, Mass., 1963.
 [12]
D.
H. Lehmer, Emma
Lehmer, and H.
S. Vandiver, An application of highspeed computing to
Fermat’s last theorem, Proc. Nat. Acad. Sci. U. S. A.
40 (1954), 25–33. MR 0061128
(15,778f)
 [13]
Tauno
Metsänkylä, Note on the distribution of irregular
primes, Ann. Acad. Sci. Fenn. Ser. A I No. 492
(1971), 7. MR
0274403 (43 #168)
 [14]
T.
Metsänkylä, Class numbers and 𝜇invariants
of cyclotomic fields, Proc. Amer. Math.
Soc. 43 (1974),
299–300. MR 0332721
(48 #11047), http://dx.doi.org/10.1090/S00029939197403327218
 [15]
Tauno
Metsänkylä, Distribution of irregular prime numbers,
J. Reine Angew. Math. 282 (1976), 126–130. MR 0399014
(53 #2865)
 [16]
Hugh
L. Montgomery, Distribution of irregular primes, Illinois J.
Math. 9 (1965), 553–558. MR 0181633
(31 #5861)
 [17]
J.
L. Selfridge, C.
A. Nicol, and H.
S. Vandiver, Proof of Fermat’s last theorem for all prime
exponents less than 4002, Proc. Nat. Acad. Sci. U.S.A.
41 (1955), 970–973. MR 0072892
(17,348a)
 [18]
J. L. SELFRIDGE & B. W. POLLACK, "Fermat's last theorem is true for any exponent up to 25,000," Notices Amer. Math. Soc., v. 11, 1964, p. 97. Abstract #608138.
 [19]
Carl
Ludwig Siegel, Zu zwei Bemerkungen Kummers, Nachr. Akad. Wiss.
Göttingen Math.Phys. Kl. II 1964 (1964), 51–57
(German). MR
0163899 (29 #1198)
 [20]
H. S. VANDIVER, "On Kummer's memoir of 1857 concerning Fermat's last theorem," Proc. Nat. Acad. Sci U.S.A., v. 6, 1920, pp. 266269.
 [21]
H. S. VANDIVER, "On the class number of the field and the second case of Fermat's last theorem," Proc. Nat. Acad. Sci. U.S.A., v. 6, 1920, pp. 416421.
 [22]
H.
S. Vandiver, On Fermat’s last
theorem, Trans. Amer. Math. Soc.
31 (1929), no. 4,
613–642. MR
1501503, http://dx.doi.org/10.1090/S00029947192915015030
 [23]
H.
S. Vandiver, On Bernoulli’s numbers and Fermat’s last
theorem, Duke Math. J. 3 (1937), no. 4,
569–584. MR
1546011, http://dx.doi.org/10.1215/S0012709437003454
 [24]
H.
S. Vandiver, Examination of methods of attack on the second case of
Fermat’s last theorem, Proc. Nat. Acad. Sci. U. S. A.
40 (1954), 732–735. MR 0062758
(16,13f)
 [25]
H.
S. Vandiver, On developments in an arithmetic theory of the
Bernoulli and allied numbers, Scripta Math. 25
(1961), 273–303. MR 0142497
(26 #66)
 [1]
 Z. I. BOREVIČ & I. R. ŠAFAREVIČ, Number Theory, "Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 #1080; 33 #4001. MR 0195803 (33:4001)
 [2]
 L. E. DICKSON, History of the Theory of Numbers. Vol. II, Carnegie Institution of Wash., Washington, D. C., 1920.
 [3]
 A. FRIEDMANN & J. TAMARKINE, "Quelques formules conçernant la théorie de la fonction [x] et des nombres de Bernoulli," J. Reine Angew. Math., v. 135, 1909, pp. 146156.
 [4]
 K. IWASAWA, "On extensions of algebraic number fields," Bull. Amer. Math. Soc., v. 65, 1959, pp. 183226. MR 23 #A1630. MR 0124316 (23:A1630)
 [5]
 K. IWASAWA, "On the invariants of cyclotomic fields," Acta Arith., v. 21, 1972, pp. 99101. MR 46 #1750. MR 0302606 (46:1750)
 [6]
 K. IWASAWA, Lecture Notes of a Course at Princeton, Fall semester, 1971.
 [7]
 K. IWASAWA &. C. SIMS, "Computation of invariants in the theory of cyclotomic fields," J. Math. Soc. Japan, v. 18, 1966, pp. 8696. MR 34 #2560. MR 0202700 (34:2560)
 [8]
 W. JOHNSON, "On the vanishing of the Iwasawa invariant for ," Math. Comp., v. 27, 1973, pp. 387396. MR 0384748 (52:5621)
 [9]
 W. JOHNSON, "Irregular prime divisors of the Bernoulli numbers," Math. Comp., v. 28, 1974, pp. 653657. MR 0347727 (50:229)
 [10]
 V. V. KOBELEV, "Proof of Fermat's last theorem for all prime exponents less than 5500," Dokl. Akad. Nauk SSSR, v. 190, 1970, pp. 767768 = Soviet Math. Dokl., v. 11, 1970, pp. 188190. MR 41 #3363. MR 0258717 (41:3363)
 [11]
 D. H. LEHMER, "Automation and pure mathematics" in Applications of Digital Computers, W. F. Freiberger and W. Prager, editors, Ginn, Boston, Mass., 1963.
 [12]
 D. H. LEHMER, E. LEHMER & H. S. VANDIVER, "An application of highspeed computing to Fermat's last theorem," Proc. Nat. Acad. Sci. U.S.A., v. 40, 1954, pp. 2533. MR 15, 778. MR 0061128 (15:778f)
 [13]
 T. METSÄNKYLÄ, "Note on the distribution of irregular primes," Ann. Acad. Sci. Fenn. Ser. A I, No. 492, 1971, 7pp. MR 43 #168. MR 0274403 (43:168)
 [14]
 T. METSÄNKYLÄ, "Class numbers and invariants of cyclotomic fields," Proc. Amer. Math. Soc., v. 43, 1974, pp. 299300. MR 0332721 (48:11047)
 [15]
 T. METSÄNKYLÄ, "Distribution of irregular prime numbers," J. Reine Angew. Math. (To appear.) MR 0399014 (53:2865)
 [16]
 H. L. MONTGOMERY, "Distribution of irregular primes," Illinois J. Math., v. 9, 1965, pp. 553558. MR 31 #5861. MR 0181633 (31:5861)
 [17]
 J. L. SELFRIDGE, C. A. NICOL & H. S. VANDIVER, "Proof of Fermat's last theorem for all prime exponents less than 4002," Proc. Nat. Acad. Sci. U.S.A., v. 41, 1955, pp. 970973. MR 17, 348. MR 0072892 (17:348a)
 [18]
 J. L. SELFRIDGE & B. W. POLLACK, "Fermat's last theorem is true for any exponent up to 25,000," Notices Amer. Math. Soc., v. 11, 1964, p. 97. Abstract #608138.
 [19]
 C. L. SIEGEL, "Zu zwei Bemerkungen Kummers," Nachr. Akad. Wiss. Göttingen, 1964, Nr. 6, 5157. MR 29 #1198; Also in Gesammelte Abhandlungen. Vol. III, SpringerVerlag, New York, 1966, pp. 436442. MR 0163899 (29:1198)
 [20]
 H. S. VANDIVER, "On Kummer's memoir of 1857 concerning Fermat's last theorem," Proc. Nat. Acad. Sci U.S.A., v. 6, 1920, pp. 266269.
 [21]
 H. S. VANDIVER, "On the class number of the field and the second case of Fermat's last theorem," Proc. Nat. Acad. Sci. U.S.A., v. 6, 1920, pp. 416421.
 [22]
 H. S. VANDIVER, "On Fermat's last theorem," Trans. Amer. Math. Soc., v. 31, 1929, pp. 613642. MR 1501503
 [23]
 H. S. VANDIVER, "On Bernoulli's numbers and Fermat's last theorem," Duke Math. J., v. 3, 1937, pp. 569584. MR 1546011
 [24]
 H. S. VANDIVER, "Examination of methods of attack on the second case of Fermat's last theorem," Proc. Nat. Acad. Sci. U.S.A., v. 40, 1954, pp. 732735. MR 16, 13. MR 0062758 (16:13f)
 [25]
 H. S. VANDIVER, "Is there an infinity of regular primes?," Scripta Math., v. 21, 1955, pp. 306309. MR 0142497 (26:66)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
12A35,
10A40,
10B15
Retrieve articles in all journals
with MSC:
12A35,
10A40,
10B15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503766069
PII:
S 00255718(1975)03766069
Keywords:
Irregular primes,
Bernoulli numbers,
Fermat's Last Theorem,
cyclotomic fields,
class numbers,
extensions,
cyclotomic invariants
Article copyright:
© Copyright 1975
American Mathematical Society
