Explicitimplicit schemes for the numerical solution of nonlinear hyperbolic systems
Authors:
G. R. McGuire and J. Ll. Morris
Journal:
Math. Comp. 29 (1975), 407424
MSC:
Primary 65M10
MathSciNet review:
0371085
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A class of methods, comprising combinations of explicit and implicit methods, for solving systems of conservation laws in one space dimension is developed. The explicit methods of McGuire and Morris [5] are combined with the implicit methods of McGuire and Morris [11] in a manner similar to that for creating Hopscotch methods (Gourlay [13]). The stability properties of these explicitimplicit methods is investigated and the results of some numerical experiments are presented. Extensions of these methods to systems of conservation laws in two space dimensions are also briefly discussed.
 [1]
A.
Jeffrey and T.
Taniuti, Nonlinear wave propagation. With applications to physics
and magnetohydrodynamics, Academic Press, New YorkLondon, 1964. MR 0167137
(29 #4410)
 [2]
O.
A. Oleĭnik, On discontinuous solutions of nonlinear
differential equations, Dokl. Akad. Nauk SSSR (N.S.)
109 (1956), 1098–1101 (Russian). MR 0083088
(18,656c)
 [3]
R. D. RICHTMYER, A Survey of Difference Methods for NonSteady Fluid Dynamics, NCAR Technical Notes 632, 1962.
 [4]
A.
R. Gourlay and J.
Ll. Morris, Finite difference methods for
nonlinear hyperbolic systems, Math. Comp.
22 (1968), 28–39.
MR
0223114 (36 #6163), http://dx.doi.org/10.1090/S00255718196802231148
 [5]
G.
R. McGuire and J.
Ll. Morris, A class of secondorder accurate methods for the
solution of systems of conservation laws, J. Computational Phys.
11 (1973), 531–549. MR 0331808
(48 #10140)
 [6]
Peter
Lax and Burton
Wendroff, Systems of conservation laws, Comm. Pure Appl. Math.
13 (1960), 217–237. MR 0120774
(22 #11523)
 [7]
Peter
D. Lax, Weak solutions of nonlinear hyperbolic equations and their
numerical computation, Comm. Pure Appl. Math. 7
(1954), 159–193. MR 0066040
(16,524g)
 [8]
Robert
D. Richtmyer and K.
W. Morton, Difference methods for initialvalue problems,
Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4,
Interscience Publishers John Wiley & Sons, Inc., New
YorkLondonSydney, 1967. MR 0220455
(36 #3515)
 [9]
R.
Courant, K.
Friedrichs, and H.
Lewy, On the partial difference equations of mathematical
physics, IBM J. Res. Develop. 11 (1967),
215–234. MR 0213764
(35 #4621)
 [10]
John
Gary, On certain finite difference schemes
for hyperbolic systems, Math. Comp. 18 (1964), 1–18. MR 0158553
(28 #1776), http://dx.doi.org/10.1090/S00255718196401585533
 [11]
G.
R. McGuire and J.
Ll. Morris, A class of implicit, secondorder accurate, dissipative
schemes for solving systems of conservation laws, J. Computational
Phys. 14 (1974), 126–147. MR 0343641
(49 #8381)
 [12]
S.
Abarbanel and G.
Zwas, An iterative finitedifference method
for hyperbolic systems, Math. Comp. 23 (1969), 549–565. MR 0247783
(40 #1044), http://dx.doi.org/10.1090/S00255718196902477832
 [13]
A.
R. Gourlay, Hopscotch: A fast secondorder partial differential
equation solver., J. Inst. Math. appl. 6 (1970),
375–390. MR 0278537
(43 #4267)
 [14]
A.
R. Gourlay and G.
R. McGuire, General hopscotch algorithm for the numerical solution
of partial differential equations, J. Inst. Math. Appl.
7 (1971), 216–227. MR 0287726
(44 #4929)
 [15]
Paul
Gordon, Nonsymmetric difference equations, J. Soc. Indust.
Appl. Math. 13 (1965), 667–673. MR 0185830
(32 #3290)
 [16]
S. M. SCALA & P. GORDON, "Solution of the timedependent NavierStokes equations for the flow around a circular cylinder," AIAA J., v. 6, 1968, pp. 815822.
 [17]
A.
R. Gourlay and J.
Ll. Morris, Hopscotch difference methods for nonlinear hyperbolic
systems, IBM J. Res. Develop. 16 (1972),
349–353. Mathematics of numerical computation. MR 0347100
(49 #11820)
 [18]
A. R. GOURLAY, G. R. MCGUIRE & J. Ll. MORRIS, One Dimensional Methods for the Numerical Solution of Nonlinear Hyperbolic Equations, IBM UK Rep. #12, 1972.
 [19]
John
J. H. Miller, On the location of zeros of certain classes of
polynomials with applications to numerical analysis, J. Inst. Math.
Appl. 8 (1971), 397–406. MR 0300435
(45 #9481)
 [20]
G. R. MCGUIRE, Hopscotch Methods for the Solution of Linear Second Order Parabolic Partial Differential Equations, M. Sc. Thesis, University of Dundee, 1970.
 [21]
Gilbert
Strang, Accurate partial difference methods. II. Nonlinear
problems, Numer. Math. 6 (1964), 37–46. MR 0166942
(29 #4215)
 [22]
Gilbert
Strang, On the construction and comparison of difference
schemes, SIAM J. Numer. Anal. 5 (1968),
506–517. MR 0235754
(38 #4057)
 [23]
G. R. MCGUIRE & J. Ll. MORRIS, "Restoring orders of accuracy for multilevel schemes for nonlinear hyperbolic systems in many space variables." (To appear.)
 [24]
E. L. RUBIN & S. Z. BURSTEIN, "Difference methods for the inviscid and viscous equations of a compressible gas," J. Computational Phys., v. 2, 1967, pp. 178196.
 [25]
Patrick
J. Roache, Computational fluid dynamics, Hermosa Publishers,
Albuquerque, N.M., 1976. With an appendix (“On artificial
viscosity”) reprinted from J. Computational Phys. 10 (1972), no. 2,
169–184; Revised printing. MR 0411358
(53 #15094)
 [1]
 A. JEFFREY & T. TANUITI, NonLinear Wave Propagation with Applications to Physics and Magnetohydrodynamics, Academic Press, New York and London, 1964. MR 29 #4410. MR 0167137 (29:4410)
 [2]
 O. A. OLEĬNIK, "On discontinuous solutions of nonlinear differential equations," Dokl. Akad. Nauk SSSR, v. 109, 1956, pp. 10981101. (Russian) MR 18, 656. MR 0083088 (18:656c)
 [3]
 R. D. RICHTMYER, A Survey of Difference Methods for NonSteady Fluid Dynamics, NCAR Technical Notes 632, 1962.
 [4]
 A. R. GOURLAY & J. Ll. MORRIS, "Finitedifference methods for nonlinear hyperbolic systems," Math. Comp., v. 22, 1968, pp. 2839. MR 36 #6163. MR 0223114 (36:6163)
 [5]
 G. R. MCGUIRE & J. Ll. MORRIS, " A class of second order accurate methos for the solution of systems of conservation laws," J. Computational Phys., v. 11, 1973, pp. 531549. MR 0331808 (48:10140)
 [6]
 P. D. LAX & B. WENDROFF, "Systems of conservation laws," Comm. Pure Appl. Math., v. 13, 1960, pp. 217237. MR 22 #11523. MR 0120774 (22:11523)
 [7]
 P. D. LAX, "Weak solutions on nonlinear hyperbolic equations and their numerical computation," Comm. Pure Appl. Math., v. 7, 1954, pp. 159193. MR 16, 524. MR 0066040 (16:524g)
 [8]
 R. D. RICHTMYER & K. W. MORTON, Difference Methods for InitialValue Problems, 2nd ed., Interscience Tracts in Pure and Appl. Math., no. 4, InterscienceWiley, New York, 1967. MR 36 #3515. MR 0220455 (36:3515)
 [9]
 R. COURANT, K. O. FRIEDRICHS & M. LEWY, "On the partial difference equations of mathematical physics'" IBM J. Res. Develop., v. 11, 1967, pp. 215234. MR 35 #4621. MR 0213764 (35:4621)
 [10]
 J. GARY, "On certain finite difference schemes for hyperbolic systems," Math. Comp., v. 18, 1964, pp. 118. MR 28 #1776. MR 0158553 (28:1776)
 [11]
 G. R. MCGUIRE & J. Ll. MORRIS, "A class of implicit, second order accurate dissipative schemes for solving systems of conservation laws," J. Computational Phys., v. 14, 1974, pp. 126147. MR 0343641 (49:8381)
 [12]
 S. ABARBANEL & G. ZWAS, "An iterative finitedifference method for hyperbolic systems," Math. Comp., v. 23, 1969, pp. 549565. MR 40 #1044. MR 0247783 (40:1044)
 [13]
 A. R. GOURLAY, "Hopscotch: A fast secondorder partial differential equation solver," J. Inst. Math. Appl., v. 6, 1970, pp. 375390. MR 43 #4267. MR 0278537 (43:4267)
 [14]
 A. R. GOURLAY & G. R. MCGUIRE, "General hopscotch algorithm for the numerical solution of partial differential equations," J. Inst. Math. Appl., v. 7, 1971, pp. 216227. MR 44 #4929. MR 0287726 (44:4929)
 [15]
 PAUL GORDON, "Nonsymmetric difference equations," J. Soc. Indust. Appl. Math., v. 13, 1965, pp. 667673. MR 32 #3290. MR 0185830 (32:3290)
 [16]
 S. M. SCALA & P. GORDON, "Solution of the timedependent NavierStokes equations for the flow around a circular cylinder," AIAA J., v. 6, 1968, pp. 815822.
 [17]
 A. R. GOURLAY & J. Ll. MORRIS, "Hopscotch difference methods for nonlinear hyperbolic systems," IBM J. Res. Develop., v. 16, 1972, pp. 349353. MR 0347100 (49:11820)
 [18]
 A. R. GOURLAY, G. R. MCGUIRE & J. Ll. MORRIS, One Dimensional Methods for the Numerical Solution of Nonlinear Hyperbolic Equations, IBM UK Rep. #12, 1972.
 [19]
 JOHN J. H. MILLER, "On the location of zeros of certain classes of polynomials with applications to numerical analysis," J. Inst. Math. Appl., v. 8, 1971, pp. 397406. MR 45 #9481. MR 0300435 (45:9481)
 [20]
 G. R. MCGUIRE, Hopscotch Methods for the Solution of Linear Second Order Parabolic Partial Differential Equations, M. Sc. Thesis, University of Dundee, 1970.
 [21]
 GILBERT STRANG, "Accurate partial difference methods. II. Nonlinear problems," Numer. Math., v. 6, 1964, pp. 3746. MR 29 #4215. MR 0166942 (29:4215)
 [22]
 GILBERT STRANG, "On the construction and comparison of difference schemes," SIAM J. Numer. Anal., v. 5, 1968, pp. 506517. MR 38 #4057. MR 0235754 (38:4057)
 [23]
 G. R. MCGUIRE & J. Ll. MORRIS, "Restoring orders of accuracy for multilevel schemes for nonlinear hyperbolic systems in many space variables." (To appear.)
 [24]
 E. L. RUBIN & S. Z. BURSTEIN, "Difference methods for the inviscid and viscous equations of a compressible gas," J. Computational Phys., v. 2, 1967, pp. 178196.
 [25]
 P. J. ROACHE, Computational Fluid Dynamics, Hermosa, Albuquerque, N. M., 1972. MR 0411358 (53:15094)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65M10
Retrieve articles in all journals
with MSC:
65M10
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819750371085X
PII:
S 00255718(1975)0371085X
Article copyright:
© Copyright 1975
American Mathematical Society
