Two-parameter, arbitrary order, exponential approximations for stiff equations

Authors:
Byron L. Ehle and Zdenek Picel

Journal:
Math. Comp. **29** (1975), 501-511

MSC:
Primary 65L99; Secondary 65D15

MathSciNet review:
0375737

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A two-parameter family of approximations to the exponential function is considered. Constraints on the parameters are determined which guarantee the approximations are *A*-acceptable. The suitability of these approximations for 2-point *A*-stable exponential fitting is established. Several numerical methods, which produce these approximations when solving , are presented.

**[1]**Theodore A. Bickart and Zdenek Picel,*High order stiffly stable composite multistep methods for numerical integration of stiff differential equations*, Nordisk Tidskr. Informationsbehandling (BIT)**13**(1973), 272–286. MR**0327043****[2]**J. C. Butcher,*Implicit Runge-Kutta processes*, Math. Comp.**18**(1964), 50–64. MR**0159424**, 10.1090/S0025-5718-1964-0159424-9**[3]**F. H. Chipman,*𝐴-stable Runge-Kutta processes*, Nordisk Tidskr. Informationsbehandling (BIT)**11**(1971), 384–388. MR**0295582****[4]**Germund G. Dahlquist,*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informations-Behandling**3**(1963), 27–43. MR**0170477****[5]**Byron L. Ehle,*𝐴-stable methods and Padé approximations to the exponential*, SIAM J. Math. Anal.**4**(1973), 671–680. MR**0331787****[6]**Byron L. Ehle,*High order 𝐴-stable methods for the numerical solution of systems of D.E.’s*, Nordisk Tidskr. Informationsbehandling (BIT)**8**(1968), 276–278. MR**0239762****[7]**B. L. EHLE,*Some Results on Exponential Approximation and Stiff Equations*, Univ. of Victoria Res. Rep. #77, Victoria, B. C., Canada, January 1974.**[8]**B. L. EHLE,*On Padé Approximations to the Exponential Function and A-Stable Methods for the Numerical Solution of Initial Value Problems*, Res. Rep. CSRR2010, Dept. of Appl. Anal. and Comput. Sci., University of Waterloo, Canada.**[9]**P. M. Hummel and C. L. Seebeck Jr.,*A generalization of Taylor’s expansion*, Amer. Math. Monthly**56**(1949), 243–247. MR**0028907****[10]**R. K. Jain,*Some 𝐴-stable methods for stiff ordinary differential equations*, Math. Comp.**26**(1972), 71–77. MR**0303733**, 10.1090/S0025-5718-1972-0303733-1**[11]**Allan M. Krall,*The root locus method: A survey*, SIAM Rev.**12**(1970), 64–72. MR**0260452****[12]**J. Douglas Lawson,*Generalized Runge-Kutta processes for stable systems with large Lipschitz constants*, SIAM J. Numer. Anal.**4**(1967), 372–380. MR**0221759****[13]**J. D. LAWSON & B. L. EHLE,*Improved Generalized Runge-Kutta*, Proc. Canadian Computer Conference, Montreal, June 1972.**[14]**H. A. Watts and L. F. Shampine,*𝐴-stable block implicit one-step methods*, Nordisk Tidskr. Informationsbehandling (BIT)**12**(1972), 252–266. MR**0307483****[15]**Richard S. Varga,*On higher order stable implicit methods for solving parabolic partial differential equations*, J. Math. and Phys.**40**(1961), 220–231. MR**0140191**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L99,
65D15

Retrieve articles in all journals with MSC: 65L99, 65D15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1975-0375737-7

Keywords:
*A*-acceptable,
exponential fitting,
stiff equations

Article copyright:
© Copyright 1975
American Mathematical Society