Two-parameter, arbitrary order, exponential approximations for stiff equations

Authors:
Byron L. Ehle and Zdenek Picel

Journal:
Math. Comp. **29** (1975), 501-511

MSC:
Primary 65L99; Secondary 65D15

DOI:
https://doi.org/10.1090/S0025-5718-1975-0375737-7

MathSciNet review:
0375737

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A two-parameter family of approximations to the exponential function is considered. Constraints on the parameters are determined which guarantee the approximations are *A*-acceptable. The suitability of these approximations for 2-point *A*-stable exponential fitting is established. Several numerical methods, which produce these approximations when solving , are presented.

**[1]**T. A. BICKART & Z. PICEL, "High order stiffly stable composite multistep methods for numerical integration of stiff differential equations," (*BIT*), v. 13, 1973, pp. 272-286. MR**0327043 (48:5385)****[2]**J. C. BUTCHER, "Implicit Runge-Kutta processes,"*Math. Comp.*, v. 18, 1964, pp. 50-64. MR**28**#2641. MR**0159424 (28:2641)****[3]**F. H. CHIPMAN, "*A*-stable Runge-Kutta processes," (*BIT*), v. 11, 1971, pp. 384-388. MR**45**#4648. MR**0295582 (45:4648)****[4]**G. G. DAHLQUIST, "A special stability problem for linear multistep methods," (*BIT*), v. 3, 1963, pp. 27-43. MR**30**#715. MR**0170477 (30:715)****[5]**B. L. EHLE, "*A*-stable methods and Padé approximation to the exponential,"*SIAM J. Math. Anal.*, v. 4, 1973, pp. 671-680. MR**0331787 (48:10119)****[6]**B. L. EHLE, "High order*A*-stable methods for the numerical solution of systems of D. E's," (*BIT*), v. 8, 1968, pp. 276-278. MR**39**#1119. MR**0239762 (39:1119)****[7]**B. L. EHLE,*Some Results on Exponential Approximation and Stiff Equations*, Univ. of Victoria Res. Rep. #77, Victoria, B. C., Canada, January 1974.**[8]**B. L. EHLE,*On Padé Approximations to the Exponential Function and A-Stable Methods for the Numerical Solution of Initial Value Problems*, Res. Rep. CSRR2010, Dept. of Appl. Anal. and Comput. Sci., University of Waterloo, Canada.**[9]**P. M. HUMMEL & C. L. SEEBECK, "A generalization of Taylor's theorem,"*Amer. Math. Monthly*, v. 56, 1949, pp. 243-247. MR 10, 516. MR**0028907 (10:516i)****[10]**R. K. JAIN, "Some*A*-stable methods for stiff ordinary differential equations,"*Math. Comp.*, v. 26, 1972, pp. 71-77. MR**46**#2869. MR**0303733 (46:2869)****[11]**ALLAN M. KRALL, "The root locus method: A survey,"*SIAM Rev.*, v. 12, 1970, pp. 64-72. MR**41**#5078. MR**0260452 (41:5078)****[12]**J. D. LAWSON, "Generalized Runge-Kutta processes for stable systems with large Lipschitz constants,"*SIAM J. Numer. Anal.*, v. 4, 1967, pp. 372-380. MR**36**#4811. MR**0221759 (36:4811)****[13]**J. D. LAWSON & B. L. EHLE,*Improved Generalized Runge-Kutta*, Proc. Canadian Computer Conference, Montreal, June 1972.**[14]**H. A. WATTS & L. F. SHAMPINE, "*A*-stable block implicit one-step methods," (*BIT*), v. 12, 1972, pp. 252-266. MR**46**#6603. MR**0307483 (46:6603)****[15]**R. S. VARGA, "On higher order stable implicit methods for solving parabolic partial differential equations,"*J. Math. and Phys.*, v. 40, 1961, pp. 220-231. MR**25**#3613. MR**0140191 (25:3613)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L99,
65D15

Retrieve articles in all journals with MSC: 65L99, 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0375737-7

Keywords:
*A*-acceptable,
exponential fitting,
stiff equations

Article copyright:
© Copyright 1975
American Mathematical Society