Twoparameter, arbitrary order, exponential approximations for stiff equations
Authors:
Byron L. Ehle and Zdenek Picel
Journal:
Math. Comp. 29 (1975), 501511
MSC:
Primary 65L99; Secondary 65D15
MathSciNet review:
0375737
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A twoparameter family of approximations to the exponential function is considered. Constraints on the parameters are determined which guarantee the approximations are Aacceptable. The suitability of these approximations for 2point Astable exponential fitting is established. Several numerical methods, which produce these approximations when solving , are presented.
 [1]
Theodore
A. Bickart and Zdenek
Picel, High order stiffly stable composite multistep methods for
numerical integration of stiff differential equations, Nordisk Tidskr.
Informationsbehandling (BIT) 13 (1973), 272–286. MR 0327043
(48 #5385)
 [2]
J.
C. Butcher, Implicit RungeKutta
processes, Math. Comp. 18 (1964), 50–64. MR 0159424
(28 #2641), http://dx.doi.org/10.1090/S00255718196401594249
 [3]
F.
H. Chipman, 𝐴stable RungeKutta processes, Nordisk
Tidskr. Informationsbehandling (BIT) 11 (1971),
384–388. MR 0295582
(45 #4648)
 [4]
Germund
G. Dahlquist, A special stability problem for linear multistep
methods, Nordisk Tidskr. InformationsBehandling 3
(1963), 27–43. MR 0170477
(30 #715)
 [5]
Byron
L. Ehle, 𝐴stable methods and Padé approximations to
the exponential, SIAM J. Math. Anal. 4 (1973),
671–680. MR 0331787
(48 #10119)
 [6]
Byron
L. Ehle, High order 𝐴stable methods for the numerical
solution of systems of D.E.’s, Nordisk Tidskr.
Informationsbehandling (BIT) 8 (1968), 276–278. MR 0239762
(39 #1119)
 [7]
B. L. EHLE, Some Results on Exponential Approximation and Stiff Equations, Univ. of Victoria Res. Rep. #77, Victoria, B. C., Canada, January 1974.
 [8]
B. L. EHLE, On Padé Approximations to the Exponential Function and AStable Methods for the Numerical Solution of Initial Value Problems, Res. Rep. CSRR2010, Dept. of Appl. Anal. and Comput. Sci., University of Waterloo, Canada.
 [9]
P.
M. Hummel and C.
L. Seebeck Jr., A generalization of Taylor’s expansion,
Amer. Math. Monthly 56 (1949), 243–247. MR 0028907
(10,516i)
 [10]
R.
K. Jain, Some 𝐴stable methods for
stiff ordinary differential equations, Math.
Comp. 26 (1972),
71–77. MR
0303733 (46 #2869), http://dx.doi.org/10.1090/S00255718197203037331
 [11]
Allan
M. Krall, The root locus method: A survey, SIAM Rev.
12 (1970), 64–72. MR 0260452
(41 #5078)
 [12]
J.
Douglas Lawson, Generalized RungeKutta processes for stable
systems with large Lipschitz constants, SIAM J. Numer. Anal.
4 (1967), 372–380. MR 0221759
(36 #4811)
 [13]
J. D. LAWSON & B. L. EHLE, Improved Generalized RungeKutta, Proc. Canadian Computer Conference, Montreal, June 1972.
 [14]
H.
A. Watts and L.
F. Shampine, 𝐴stable block implicit onestep methods,
Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972),
252–266. MR 0307483
(46 #6603)
 [15]
Richard
S. Varga, On higher order stable implicit methods for solving
parabolic partial differential equations, J. Math. and Phys.
40 (1961), 220–231. MR 0140191
(25 #3613)
 [1]
 T. A. BICKART & Z. PICEL, "High order stiffly stable composite multistep methods for numerical integration of stiff differential equations," (BIT), v. 13, 1973, pp. 272286. MR 0327043 (48:5385)
 [2]
 J. C. BUTCHER, "Implicit RungeKutta processes," Math. Comp., v. 18, 1964, pp. 5064. MR 28 #2641. MR 0159424 (28:2641)
 [3]
 F. H. CHIPMAN, "Astable RungeKutta processes," (BIT), v. 11, 1971, pp. 384388. MR 45 #4648. MR 0295582 (45:4648)
 [4]
 G. G. DAHLQUIST, "A special stability problem for linear multistep methods," (BIT), v. 3, 1963, pp. 2743. MR 30 #715. MR 0170477 (30:715)
 [5]
 B. L. EHLE, "Astable methods and Padé approximation to the exponential," SIAM J. Math. Anal., v. 4, 1973, pp. 671680. MR 0331787 (48:10119)
 [6]
 B. L. EHLE, "High order Astable methods for the numerical solution of systems of D. E's," (BIT), v. 8, 1968, pp. 276278. MR 39 #1119. MR 0239762 (39:1119)
 [7]
 B. L. EHLE, Some Results on Exponential Approximation and Stiff Equations, Univ. of Victoria Res. Rep. #77, Victoria, B. C., Canada, January 1974.
 [8]
 B. L. EHLE, On Padé Approximations to the Exponential Function and AStable Methods for the Numerical Solution of Initial Value Problems, Res. Rep. CSRR2010, Dept. of Appl. Anal. and Comput. Sci., University of Waterloo, Canada.
 [9]
 P. M. HUMMEL & C. L. SEEBECK, "A generalization of Taylor's theorem," Amer. Math. Monthly, v. 56, 1949, pp. 243247. MR 10, 516. MR 0028907 (10:516i)
 [10]
 R. K. JAIN, "Some Astable methods for stiff ordinary differential equations," Math. Comp., v. 26, 1972, pp. 7177. MR 46 #2869. MR 0303733 (46:2869)
 [11]
 ALLAN M. KRALL, "The root locus method: A survey," SIAM Rev., v. 12, 1970, pp. 6472. MR 41 #5078. MR 0260452 (41:5078)
 [12]
 J. D. LAWSON, "Generalized RungeKutta processes for stable systems with large Lipschitz constants," SIAM J. Numer. Anal., v. 4, 1967, pp. 372380. MR 36 #4811. MR 0221759 (36:4811)
 [13]
 J. D. LAWSON & B. L. EHLE, Improved Generalized RungeKutta, Proc. Canadian Computer Conference, Montreal, June 1972.
 [14]
 H. A. WATTS & L. F. SHAMPINE, "Astable block implicit onestep methods," (BIT), v. 12, 1972, pp. 252266. MR 46 #6603. MR 0307483 (46:6603)
 [15]
 R. S. VARGA, "On higher order stable implicit methods for solving parabolic partial differential equations," J. Math. and Phys., v. 40, 1961, pp. 220231. MR 25 #3613. MR 0140191 (25:3613)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L99,
65D15
Retrieve articles in all journals
with MSC:
65L99,
65D15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503757377
PII:
S 00255718(1975)03757377
Keywords:
Aacceptable,
exponential fitting,
stiff equations
Article copyright:
© Copyright 1975
American Mathematical Society
