Sevenpoint difference schemes for hyperbolic equations
Author:
Avishai Livne
Journal:
Math. Comp. 29 (1975), 425433
MSC:
Primary 65M05
MathSciNet review:
0398114
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A necessary and sufficient condition is given for all hyperbolic difference schemes that use up to nine mesh points to be of secondorder accuracy. We also construct a new difference scheme for twodimensional hyperbolic systems of conservation laws. The scheme is of secondorder accuracy and requires knowledge of only seven mesh points. A stability condition is obtained and is utilized in numerical computations.
 [1]
B.
Eilon, D.
Gottlieb, and G.
Zwas, Numerical stabilizers and computing time for secondorder
accurate schemes, J. Computational Phys. 9 (1972),
387–397. MR 0300471
(45 #9517)
 [2]
A.
R. Gourlay and J.
Ll. Morris, A multistep formulation of the
optimized LaxWendroff method for nonlinear hyperbolic systems in two space
variables, Math. Comp. 22 (1968), 715–719. MR 0251931
(40 #5156), http://dx.doi.org/10.1090/S00255718196802519317
 [3]
HeinzOtto
Kreiss, Über die Stabilitätsdefinition für
Differenzengleichungen die partielle Differentialgleichungen
approximieren, Nordisk Tidskr. InformationsBehandling
2 (1962), 153–181 (German, with English summary). MR 0165712
(29 #2992)
 [4]
Peter
Lax and Burton
Wendroff, Systems of conservation laws, Comm. Pure Appl. Math.
13 (1960), 217–237. MR 0120774
(22 #11523)
 [5]
Peter
D. Lax and Burton
Wendroff, Difference schemes for hyperbolic equations with high
order of accuracy, Comm. Pure Appl. Math. 17 (1964),
381–398. MR 0170484
(30 #722)
 [6]
R. W. MacCORMACK, Numerical Solution of the Interaction of a Shock Wave with a Laminar Boundary Layer, Proc. 2nd Internat. Conf. on Numerical Methods in Fluid Dynamics (M. Holt, Editor), SpringerVerlag Lecture Notes in Phys., 1970.
 [7]
R. D. RICHTMYER, A Survey of Difference Methods for Nonsteady Fluid Dynamics, N.C.A.R. Technical Notes, 1963, pp. 263.
 [8]
Gilbert
Strang, Accurate partial difference methods. II. Nonlinear
problems, Numer. Math. 6 (1964), 37–46. MR 0166942
(29 #4215)
 [1]
 B. EILON, D. GOTTLIEB & G. ZWAS, "Numerical stabilizers and computing time for secondorder accurate schemes," J. Computational Phys., v. 9, 1972, pp. 387397. MR 45 #9517. MR 0300471 (45:9517)
 [2]
 A. R. GOURLAY & J. Ll. MORRIS, "A multistep formulation of the optimized LaxWendroff method for nonlinear hyperbolic systems in two space variables," Math. Comp., v. 22 1968, pp. 715719. MR 40 #5156. MR 0251931 (40:5156)
 [3]
 H. O, KREISS, "Über die Stabilitätsdefinition für Differenzengleichungen, die partielle Differentialgleichungen Approximieren," Nordisk Tidskr. Informationsbehandling (BIT), v. 2, 1962, pp. 153181. MR 0165712 (29:2992)
 [4]
 P. D. LAX & B. WENDROFF, "Systems of conservation laws," Comm. Pure Appl. Math., v. 13, 1960, pp. 217237. MR 22 #11523. MR 0120774 (22:11523)
 [5]
 P. D. LAX & B. WENDROFF, "Difference schemes for hyperbolic equations with high order of accuracy," Comm. Pure Appl. Math., v. 17, 1964, pp. 381398. MR 30 #722. MR 0170484 (30:722)
 [6]
 R. W. MacCORMACK, Numerical Solution of the Interaction of a Shock Wave with a Laminar Boundary Layer, Proc. 2nd Internat. Conf. on Numerical Methods in Fluid Dynamics (M. Holt, Editor), SpringerVerlag Lecture Notes in Phys., 1970.
 [7]
 R. D. RICHTMYER, A Survey of Difference Methods for Nonsteady Fluid Dynamics, N.C.A.R. Technical Notes, 1963, pp. 263.
 [8]
 G. STRANG, "Accurate partial difference methods. II. Nonlinear problems," Numer. Math., v. 6, 1964, pp. 3746. MR 29 #4215. MR 0166942 (29:4215)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65M05
Retrieve articles in all journals
with MSC:
65M05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503981141
PII:
S 00255718(1975)03981141
Keywords:
Quasilinear hyperbolic equations,
finitedifference schemes,
LaxWendroff,
seven points,
consistency,
stability conservation laws
Article copyright:
© Copyright 1975
American Mathematical Society
