On the osculatory rational interpolation problem
Author:
Luc Wuytack
Journal:
Math. Comp. 29 (1975), 837843
MSC:
Primary 65D05
MathSciNet review:
0371008
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The problem of the existence and construction of a table of osculating rational functions for is considered. First, a survey is given of some results from the theory of osculatory rational interpolation of order at points for . Using these results, we prove the existence of continued fractions of the form with the suitably selected from among the , whose convergents form the elements of the table. The properties of these continued fractions make it possible to derive an algorithm for constructing their coefficients for . This algorithm is a generalization of the qdalgorithm.
 [1]
S.
W. Kahng, Osculatory interpolation, Math. Comp. 23 (1969), 621–629. MR 0247732
(40 #995), http://dx.doi.org/10.1090/S00255718196902477327
 [2]
L.
M. MilneThomson, The Calculus of Finite Differences,
Macmillan and Co., Ltd., London, 1951. MR 0043339
(13,245c)
 [3]
Herbert
E. Salzer, Note on osculatory rational
interpolation, Math. Comp. 16 (1962), 486–491. MR 0149648
(26 #7133), http://dx.doi.org/10.1090/S00255718196201496487
 [4]
T.
P. Angelitch, G.
Aumann, F.
L. Bauer, R.
Bulirsch, H.
P. Künzi, H.
Rutishauser, K.
Samelson, R.
Sauer, and J.
Stoer, Mathematische Hilfsmittel des Ingenieurs. Teil III,
Herausgegeben von R. Sauer und I. Szabó. Unter Mitwirkung von H.
Neuber, W. Nürnberg, K. Pöschl, E. Truckenbrodt und W. Zander.
Die Grundlehren der mathematischen Wissenschaften, Band 141,
SpringerVerlag, BerlinNew York, 1968 (German). MR 0231562
(37 #7115)
 [5]
H. C. THACHER, JR., "A recursive procedure for osculatory interpolation by rational functions." (Unpublished manuscript.)
 [6]
Luc
Wuytack, An algorithm for rational interpolation similar to the
𝑞𝑑algorithm, Numer. Math. 20
(1972/73), 418–424. MR 0324873
(48 #3222)
 [7]
Luc
Wuytack, On some aspects of the rational interpolation
problem, SIAM J. Numer. Anal. 11 (1974), 52–60.
MR
0340890 (49 #5640)
 [1]
 S. W. KAHNG, "Osculatory interpolation," Math. Comp., v. 23, 1969, pp. 621630. MR 40 #995. MR 0247732 (40:995)
 [2]
 L. M. MILNETHOMSON, The Calculus of Finite Differences, Macmillan, London, 1933. MR 0043339 (13:245c)
 [3]
 H. E. SALZER, "Note on osculatory rational interpolation," Math. Comp., v. 16, 1962, pp. 486491. MR 26 #7133. MR 0149648 (26:7133)
 [4]
 R. SAUER et al., Mathematische Hilfsmittel des Ingenieurs. Teil III, Die Grundlehren der math. Wissenschaften, Band 141, SpringerVerlag, Berlin and New York, 1968. MR 37 #7115. MR 0231562 (37:7115)
 [5]
 H. C. THACHER, JR., "A recursive procedure for osculatory interpolation by rational functions." (Unpublished manuscript.)
 [6]
 L. WUYTACK, "An algorithm for rational interpolation similar to the qdalgorithm," Numer. Math., v. 20, 1972/73, pp. 418424. MR 48 #3222. MR 0324873 (48:3222)
 [7]
 L. WUYTACK, "On some aspects of the rational interpolation problem," SIAM J. Numer. Anal., v. 11, 1974, pp. 5260. MR 0340890 (49:5640)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D05
Retrieve articles in all journals
with MSC:
65D05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503710083
PII:
S 00255718(1975)03710083
Article copyright:
© Copyright 1975
American Mathematical Society
