Factoring multivariate polynomials over the integers

Authors:
Paul S. Wang and Linda Preiss Rothschild

Journal:
Math. Comp. **29** (1975), 935-950

MSC:
Primary 10M05; Secondary 68A10

DOI:
https://doi.org/10.1090/S0025-5718-1975-0396471-3

MathSciNet review:
0396471

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm for the irreducible factorization of any multivariate polynomial over the integers is given. It is much faster than the classical method ascribed to Kronecker. The algorithm begins by making substitutions for all but one of the variables with selected integers, giving a polynomial in just one variable. This univariate polynomial is then factored by a known method, which uses an algorithm of Berlekamp for factoring univariate polynomials over finite fields. The multivariate factors are constructed from the univariate ones by a kind of Hensel algorithm. The procedure has been implemented in the algebraic manipulation systems MACSYMA and SCRATCHPAD. A number of machine examples with timing are included.

**[1]**E. R. Berlekamp,*Factoring polynomials over finite fields*, Bell System Tech. J.**46**(1967), 1853–1859. MR**0219231**, https://doi.org/10.1002/j.1538-7305.1967.tb03174.x**[2]**E. R. Berlekamp,*Factoring polynomials over large finite fields*, Math. Comp.**24**(1970), 713–735. MR**0276200**, https://doi.org/10.1090/S0025-5718-1970-0276200-X**[3]**W. S. Brown,*On Euclid’s algorithm and the computation of polynomial greatest common divisors*, J. Assoc. Comput. Mach.**18**(1971), 478–504. MR**0307450**, https://doi.org/10.1145/321662.321664**[4]**G. E. COLLINS, SAC-1*Modular Arithmetic System*, University of Wisconsin Technical Report No. 10, June 1969.**[5]**A. O. Gel′fond,*Transcendental and algebraic numbers*, Translated from the first Russian edition by Leo F. Boron, Dover Publications, Inc., New York, 1960. MR**0111736****[6]**Donald E. Knuth,*The art of computer programming. Vol. 2: Seminumerical algorithms*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969. MR**0286318****[7]**J. McCARTHY et al., LISP 1.5*Programmer's Manual*, M.I.T. Press, Cambridge, Mass., 1963.**[8]**J. MOSES & D. Y. Y. YUN, "The EZ GCD algorithm,"*Proceedings of ACM Annual Conference*, August 1973.**[9]**D. R. MUSSER,*Algorithms for Polynomial Factorization*, Ph. D. Thesis, Computer Science Department, The University of Wisconsin, Madison, Wis., 1971.**[10]**B. L. VAN DER WAERDEN,*Modern Algebra*. Vol. 1, Springer, Berlin, 1930; English transl., Ungar, New York, 1949. MR**10**, 587.**[11]**D. Y. Y. YUN,*The Hensel Lemma in Algebraic Manipulation*, Ph. D. Thesis, Department of Mathematics, M.I.T., Nov. 1973 (also Project MAC TR-138, November 1974).**[12]**Hans Zassenhaus,*On Hensel factorization. I*, J. Number Theory**1**(1969), 291–311. MR**0242793**, https://doi.org/10.1016/0022-314X(69)90047-X**[13]**MACSYMA*Reference Manual*, the MATHLAB group, Project MAC, M.I.T., Cambridge, Mass., Sept. 1974.

Retrieve articles in *Mathematics of Computation*
with MSC:
10M05,
68A10

Retrieve articles in all journals with MSC: 10M05, 68A10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0396471-3

Article copyright:
© Copyright 1975
American Mathematical Society