A nearest point algorithm for convex polyhedral cones and applications to positive linear approximation
Author:
Don R. Wilhelmsen
Journal:
Math. Comp. 30 (1976), 4857
MSC:
Primary 52A25; Secondary 65D99
MathSciNet review:
0394439
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Suppose K is a convex polyhedral cone in and is defined in terms of some generating set . A procedure is devised so that, given any point , the nearest point p in K to q can be found as a positive linear sum of points from the generating set. The procedure requires at most finitely many linear steps. The algorithm is then applied to find a positive representation for a positive linear functional L acting on a suitable finitedimensional function space .
 [1]
Philip
J. Davis, A construction of nonnegative
approximate quadratures, Math. Comp. 21 (1967), 578–582.
MR
0222534 (36 #5584), http://dx.doi.org/10.1090/S00255718196702225344
 [2]
Philip
J. Davis, Interpolation and approximation, Blaisdell
Publishing Co. Ginn and Co. New YorkTorontoLondon, 1963. MR 0157156
(28 #393)
 [3]
A.
H. Stroud, Approximate calculation of multiple integrals,
PrenticeHall, Inc., Englewood Cliffs, N.J., 1971. PrenticeHall Series in
Automatic Computation. MR 0327006
(48 #5348)
 [4]
Vladimir
Tchakaloff, Formules de cubatures mécaniques à
coefficients non négatifs, Bull. Sci. Math. (2)
81 (1957), 123–134 (French). MR 0094632
(20 #1145)
 [5]
Don
R. Wilhelmsen, Nonnegative cubature on convex sets, SIAM J.
Numer. Anal. 11 (1974), 332–346. MR 0347062
(49 #11782)
 [6]
M.
Wayne Wilson, A general algorithm for nonnegative
quadrature formulas, Math. Comp. 23 (1969), 253–258. MR 0242374
(39 #3705), http://dx.doi.org/10.1090/S00255718196902423741
 [7]
M.
Wayne Wilson, Necessary and sufficient conditions for equidistant
quadrature formula., SIAM J. Numer. Anal. 7 (1970),
134–141. MR 0282530
(43 #8241)
 [8]
Philip
Wolfe, Finding the nearest point in a polytope, Math.
Programming 11 (1976), no. 2, 128–149. MR 0452683
(56 #10962)
 [1]
 P. J. DAVIS, "A construction of nonnegative approximate quadratures," Math. Comp., v. 21, 1967, pp. 578582. MR 36 #5584. MR 0222534 (36:5584)
 [2]
 P. J. DAVIS, Interpolation and Approximation, Blaisdell, New York, 1963. MR 28 #393. MR 0157156 (28:393)
 [3]
 A. H. STROUD, Approximate Calculation of Multiple Integrals, PrenticeHall Ser. in Automatic Computation, PrenticeHall, Englewood Cliffs, N. J., 1971. MR 48 #5348. MR 0327006 (48:5348)
 [4]
 V. TCHAKALOFF, "Formules de cubatures mécaniques à coefficients nonnégatifs," Bull. Sci. Math. (2), v. 81, 1957, pp. 123134. MR 20 #1145. MR 0094632 (20:1145)
 [5]
 D. R. WILHELMSEN, "Nonnegative cubature on convex sets," SIAM J. Numer. Anal., v. 11, 1974, pp. 332346. MR 0347062 (49:11782)
 [6]
 M. W. WILSON, "A general algorithm for nonnegative quadrature formulas," Math. Comp., V. 23, 1969, pp. 253258. MR 39 #3705. MR 0242374 (39:3705)
 [7]
 M. W. WILSON, "Necessary and sufficient conditions for equidistant quadrature formula," SIAM J. Numer. Anal., v. 7, 1970, pp. 134141. MR 43 #8241. MR 0282530 (43:8241)
 [8]
 P. WOLF, "Finding the nearest point in a polytope," Math. Programming.(To appear.) MR 0452683 (56:10962)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
52A25,
65D99
Retrieve articles in all journals
with MSC:
52A25,
65D99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197603944395
PII:
S 00255718(1976)03944395
Keywords:
Convex set,
nearest point,
projection,
positive linear approximation,
linear algorithm,
cubature
Article copyright:
© Copyright 1976
American Mathematical Society
