Existence of Gauss interpolation formulas for the one-dimensional heat equation

Author:
David L. Barrow

Journal:
Math. Comp. **30** (1976), 24-34

MSC:
Primary 65M05

DOI:
https://doi.org/10.1090/S0025-5718-1976-0413523-0

MathSciNet review:
0413523

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Jordan arc in the *x-t* plane satisfying , and when . Let . We prove the existence of Gauss interpolation formulas for *C* and the point , for solutions *u* of the one-dimensional heat equation, . Such formulas approximate in terms of a linear combination of its values on *C*. The formulas are characterized by the requirement that they are exact for as many basis functions (the heat polynomials) as possible.

**[1]**P. APPELL, "Sur l'équation et la théorie de la chaleur,"*J. Math. Pures Appl.*, v. 8, 1892, pp. 187-216.**[2]**David L. Barrow and A. H. Stroud,*Existence of Gauss harmonic interpolation formulas*, SIAM J. Numer. Anal.**13**(1976), no. 1, 18–26. MR**0413425**, https://doi.org/10.1137/0713003**[3]**David Colton,*The approximation of solutions to initial boundary value problems for parabolic equations in one space variable*, Quart. Appl. Math.**33**(1975/76), no. 4, 377–386. MR**0454348**, https://doi.org/10.1090/S0033-569X-1976-0454348-5**[4]**David Colton,*Complete families of solutions for parabolic equations with analytic coefficients*, SIAM J. Math. Anal.**6**(1975), no. 6, 937–947. MR**0385322**, https://doi.org/10.1137/0506082**[5]**P. J. Davis and M. W. Wilson,*Nonnegative interpolation formulas for uniformly elliptic equations.*, J. Approximation Theory**1**(1968), 374–380. MR**0243236****[6]**Samuel Karlin and William J. Studden,*Tchebycheff systems: With applications in analysis and statistics*, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR**0204922****[7]**J. M. Ortega and W. C. Rheinboldt,*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810****[8]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861****[9]**P. C. Rosenbloom and D. V. Widder,*Expansions in terms of heat polynomials and associated functions*, Trans. Amer. Math. Soc.**92**(1959), 220–266. MR**0107118**, https://doi.org/10.1090/S0002-9947-1959-0107118-2**[10]**B. D. SHRIVER,*Interpolation Formulas of Gauss Type for Approximate Solution of the n-Dimensional Heat Equation*, Ph.D. Thesis, State University of New York at Buffalo, 1971.**[11]**J. T. Schwartz,*Nonlinear functional analysis*, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Notes by H. Fattorini, R. Nirenberg and H. Porta, with an additional chapter by Hermann Karcher; Notes on Mathematics and its Applications. MR**0433481****[12]**A. H. Stroud,*Gauss harmonic interpolation formulas*, Comm. ACM**17**(1974), 471–475. MR**0362827**, https://doi.org/10.1145/361082.361100**[13]**A. H. Stroud,*Some interpolation formulas for the Neumann problem for the 𝑛-sphere*, SIAM J. Numer. Anal.**12**(1975), no. 4, 593–604. MR**0398051**, https://doi.org/10.1137/0712045**[14]**A. H. Stroud and David L. Barrow,*Gauss formulas for the Dirichlet problem*, Bull. Amer. Math. Soc.**80**(1974), 1230–1232. MR**0436556**, https://doi.org/10.1090/S0002-9904-1974-13692-X**[15]**D. V. Widder,*Analytic solutions of the heat equation*, Duke Math. J.**29**(1962), 497–503. MR**0157127**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M05

Retrieve articles in all journals with MSC: 65M05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0413523-0

Article copyright:
© Copyright 1976
American Mathematical Society