On an algorithm of Billevich for finding units in algebraic fields

Authors:
Ray Steiner and Ronald Rudman

Journal:
Math. Comp. **30** (1976), 598-609

MSC:
Primary 12A45

DOI:
https://doi.org/10.1090/S0025-5718-1976-0404204-8

MathSciNet review:
0404204

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The well-known algorithm of Billevich for finding units in algebraic number fields is derived by algebraic methods. Some tables of units in cubic and quartic fields are given.

**[1]**W. E. H. BERWICK, "Algebraic number fields with two independent units,"*Proc. London Math. Soc.*, v. 34 (2), 1932, pp. 360-378.**[2]**K. K. BILLEVIČ, "On units of algebraic fields of third and fourth degrees,"*Mat. Sb.*, v. 40 (82), 1956, pp. 123-136. (Russian) MR**19**, 533. MR**0088516 (19:533d)****[3]**K. K. BILLEVIČ, "Letter to the Editor,"*Mat. Sb.*, v. 48 (90), 1959, p. 256. (Russian) MR**23**#A879. MR**0123554 (23:A879)****[4]**K. K. BILLEVIČ, "A theorem on unit elements of algebraic fields of order*n*,"*Mat. Sb.*, v. 64 (106), 1962, pp. 145-152. (Russian) MR**29**#1201. MR**0163902 (29:1201)****[5]**Z. I. BOREVIČ & I. R. ŠAFAREVIČ,*Number Theory*, "Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR**30**#1080;**33**#4001. MR**0195803 (33:4001)****[6]**B. N. DELONE & D. K. FADDEEV,*The Theory of Irrationalities of the Third Degree*, Trudy Mat. Inst. Steklov., v. 11, 1940; English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., 1964. MR**2**, 349;**28**#3955. MR**0004269 (2:349d)****[7]**O. HEMER,*On the Diophantine Equation*, Doctoral Dissertation, Uppsala, 1952. MR**0049917 (14:247d)****[8]**O. HEMER, "Notes on the Diophantine equation ,"*Ark. Mat.*, v. 3, 1954, pp. 67-77. MR**15**, 776. MR**0061115 (15:776h)****[9]**H. LONDON & R. FINKELSTEIN,*On Mordell's Equation*, Bowling Green State Univ., Bowling Green, Ohio, 1973. MR**49**#4928. MR**0340172 (49:4928)****[10]**H. B. MANN,*Introduction to Algebraic Number Theory*, Ohio State Univ. Press, Columbus, Ohio, 1956. MR**17**, 240. MR**0072174 (17:240e)****[11]**G. F. VORONOĬ,*On a Generalization of the Algorithm of Continued Fractions*, Doctoral Dissertation, Warsaw, 1896. (Russian)**[12]**H. C. WILLIAMS & C. R. ZARNKE,*A Table of Fundamental Units for Cubic Fields*, Scientific Report No. 63, University of Manitoba, 1973.

Retrieve articles in *Mathematics of Computation*
with MSC:
12A45

Retrieve articles in all journals with MSC: 12A45

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0404204-8

Keywords:
Algebraic number field,
units,
Billevich's algorithm,
multiplicative lattices,
Cramer's rule,
fundamental units

Article copyright:
© Copyright 1976
American Mathematical Society