Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On an algorithm of Billevich for finding units in algebraic fields


Authors: Ray Steiner and Ronald Rudman
Journal: Math. Comp. 30 (1976), 598-609
MSC: Primary 12A45
DOI: https://doi.org/10.1090/S0025-5718-1976-0404204-8
MathSciNet review: 0404204
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The well-known algorithm of Billevich for finding units in algebraic number fields is derived by algebraic methods. Some tables of units in cubic and quartic fields are given.


References [Enhancements On Off] (What's this?)

  • [1] W. E. H. BERWICK, "Algebraic number fields with two independent units," Proc. London Math. Soc., v. 34 (2), 1932, pp. 360-378.
  • [2] K. K. BILLEVIČ, "On units of algebraic fields of third and fourth degrees," Mat. Sb., v. 40 (82), 1956, pp. 123-136. (Russian) MR 19, 533. MR 0088516 (19:533d)
  • [3] K. K. BILLEVIČ, "Letter to the Editor," Mat. Sb., v. 48 (90), 1959, p. 256. (Russian) MR 23 #A879. MR 0123554 (23:A879)
  • [4] K. K. BILLEVIČ, "A theorem on unit elements of algebraic fields of order n," Mat. Sb., v. 64 (106), 1962, pp. 145-152. (Russian) MR 29 #1201. MR 0163902 (29:1201)
  • [5] Z. I. BOREVIČ & I. R. ŠAFAREVIČ, Number Theory, "Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 #1080; 33 #4001. MR 0195803 (33:4001)
  • [6] B. N. DELONE & D. K. FADDEEV, The Theory of Irrationalities of the Third Degree, Trudy Mat. Inst. Steklov., v. 11, 1940; English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., 1964. MR 2, 349; 28 #3955. MR 0004269 (2:349d)
  • [7] O. HEMER, On the Diophantine Equation $ {y^2} - k = {x^3}$, Doctoral Dissertation, Uppsala, 1952. MR 0049917 (14:247d)
  • [8] O. HEMER, "Notes on the Diophantine equation $ {y^2} - k = {x^3}$," Ark. Mat., v. 3, 1954, pp. 67-77. MR 15, 776. MR 0061115 (15:776h)
  • [9] H. LONDON & R. FINKELSTEIN, On Mordell's Equation $ {y^2} - k = {x^3}$, Bowling Green State Univ., Bowling Green, Ohio, 1973. MR 49 #4928. MR 0340172 (49:4928)
  • [10] H. B. MANN, Introduction to Algebraic Number Theory, Ohio State Univ. Press, Columbus, Ohio, 1956. MR 17, 240. MR 0072174 (17:240e)
  • [11] G. F. VORONOĬ, On a Generalization of the Algorithm of Continued Fractions, Doctoral Dissertation, Warsaw, 1896. (Russian)
  • [12] H. C. WILLIAMS & C. R. ZARNKE, A Table of Fundamental Units for Cubic Fields, Scientific Report No. 63, University of Manitoba, 1973.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12A45

Retrieve articles in all journals with MSC: 12A45


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1976-0404204-8
Keywords: Algebraic number field, units, Billevich's algorithm, multiplicative lattices, Cramer's rule, fundamental units
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society