The largest degrees of irreducible characters of the symmetric group

Author:
John McKay

Journal:
Math. Comp. **30** (1976), 624-631

MSC:
Primary 20C15; Secondary 20-04

DOI:
https://doi.org/10.1090/S0025-5718-1976-0404414-X

MathSciNet review:
0404414

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The largest irreducible degrees and the partitions associated with them are tabulated for the symmetric group for *n* up to 75. Analytic upper and lower bounds are derived for the largest degree.

**[1]**R. M. BAER & P. BROCK, "Natural sorting over permutation spaces,"*Math. Comp.*, v. 22, 1968, pp. 385-410. MR**37**#3800. MR**0228216 (37:3800)****[2]**R. L. BIVINS, N. METROPOLIS, P. R. STEIN & M. B. WELLS, "Characters of the symmetric groups of degree 15 and 16,"*Math. Comp.*, v. 8, 1954, pp. 212-216. MR**16**, 333. MR**0064776 (16:333b)****[3]**S. CHOWLA, I. N. HERSTEIN & W. K. MOORE, "On recursions connected with symmetric groups. I,"*Canad. J. Math.*, v. 3, 1951, pp. 328-334. MR**13**, 10. MR**0041849 (13:10c)****[4]**S. COMÉET, "Improved methods to calculate the characters of the symmetric group,"*Math. Comp.*, v. 14, 1960, pp. 104-117. MR**22**#10212. MR**0119451 (22:10212)****[5]**W. FEIT,*Characters of Finite Groups*, Benjamin, New York, 1967. MR**36**#2715. MR**0219636 (36:2715)****[6]**D. E. KNUTH,*The Art of Computer Programming*. Vol. 3, Addison-Wesley, Reading, Mass., 1973. MR**0445948 (56:4281)****[7]**B. F. LOGAN & L. A. SHEPP, "A variational problem for random Young tableaux." (To appear.)**[8]**W. F. LUNNON, "Multi-length arithmetic for Atlas." (Unpublished.)**[9]**J. McKAY, "Symmetric group characters--Algorithm 307,"*Comm. ACM*, v. 10, 1967, p. 451; ibid., v. 11, 1968, p. 14.**[10]**J. McKAY, "On the evaluation of multiplicative combinatorial expressions,"*Comm. ACM*, v. 11, 1968, p. 392.**[11]**J. McKAY, "Partitions in natural order--Algorithm 371,"*Comm. ACM*, v. 13, 1970, p. 52.

Retrieve articles in *Mathematics of Computation*
with MSC:
20C15,
20-04

Retrieve articles in all journals with MSC: 20C15, 20-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0404414-X

Keywords:
Irreducible representation,
symmetric group,
largest degree

Article copyright:
© Copyright 1976
American Mathematical Society