Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 30 (1976), 664-674
DOI: https://doi.org/10.1090/S0025-5718-76-99665-4
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. R. EDMONDS, Angular Momentum in Quantum Mechanics, Princeton Univ. Press, Princeton, N. J., 1960.
  • [2] B. KROHN, Private communication, 1975.
  • [1] D. E. KNUTH, The Art of Computer Programming, v. 1, Fundamental Algorithms; v. 2, Seminumerical Algorithms; v. 3, Sorting and Searching, Addison-Wesley, Reading, Mass., 1968-1973. MR 0378456 (51:14624)
  • [1] THE INSTITUTE OF MATHEMATICAL STATISTICS, Editors, and H. L. HARTER & D. B. OWEN, Coeditors, Selected Tables in Mathematical Statistics, Vol. I, American Mathematical Society, Providence, R. I., second printing, 1973. (See Math. Comp., v. 29, 1975, p. 661, RMT 32.) MR 0408180 (53:11946)
  • [1] I. O. ANGELL, "A table of totally real cubic fields," Math. Comp., v. 30, 1976, pp. 184-187. MR 0401701 (53:5528)
  • [2] DANIEL SHANKS, UMT Review 33 of I. O. Angell, "Table of complex cubic fields," Math. Comp., v. 29, 1975, pp. 661-665. MR 0409358 (53:13114b)
  • [3] H. J. GODWIN & P. A. SAMET, "A table of real cubic fields," J. London Math. Soc., v. 34, 1959, pp. 108-110. MR 0100579 (20:7009)
  • [4] DANIEL SHANKS, "On Gauss's class number problems," Math. Comp., v. 23, 1969, pp. 151-163. MR 0262204 (41:6814)
  • [5] H. DAVENPORT & H. HEILBRONN, On the density of discriminants of cubic fields. II," Proc. Roy. Soc. London Ser. A, v. 322, 1971, pp. 405-420. MR 0491593 (58:10816)
  • [6] DANIEL SHANKS, "New types of quadratic fields having three invariants divisible by 3," J. Number Theory, v. 4, 1972, pp. 537-556. MR 0313220 (47:1775)
  • [7] DANIEL SHANKS & PETER WEINBERGER, "A quadratic field of prime discriminant requiring three generators for its class group, and related theory," Acta Arith., v. 21, 1972, pp. 71-87. MR 0309899 (46:9003)
  • [8] DANIEL SHANKS, "Class groups of the quadratics fields found by F. Diaz y Diaz," Math. Comp., v. 30, 1976, pp. 173-178. MR 0399039 (53:2890)
  • [9] RICHARD B. LAKEIN, "Computation of the ideal class group of certain complex quartic fields. II," Math. Comp., v. 29, 1975, pp. 137-144. MR 0444605 (56:2955)


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-76-99665-4
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society