Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **30** (1976), 664-674

DOI:
https://doi.org/10.1090/S0025-5718-76-99665-4

Full-text PDF

References | Additional Information

**[1]**A. R. EDMONDS,*Angular Momentum in Quantum Mechanics*, Princeton Univ. Press, Princeton, N. J., 1960.**[2]**B. KROHN, Private communication, 1975.**[1]**Donald E. Knuth,*The art of computer programming*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**0378456****[1]**D. B. Owen (ed.),*Selected tables in mathematical statistics. Vol. I*, American Mathematical Society, Providence, R. I.; Institute of Mathematical Statistics, Statistical Laboratory, Michigan State University, East Lansing, Mich., 1973. Second printing with revisions. MR**0408180****[1]**I. O. Angell,*A table of totally real cubic fields*, Math. Comput.**30**(1976), no. 133, 184–187. MR**0401701**, https://doi.org/10.1090/S0025-5718-1976-0401701-6**[2]**Daniel Shanks,*Corrigenda: “Calculation and applications of Epstein zeta functions” (Math. Comp. 29 (1975), 271–287)*, Math. Comp.**29**(1975), no. 132, 1167. MR**0409358**, https://doi.org/10.1090/S0025-5718-1975-0409358-4**[3]**H. J. Godwin and P. A. Samet,*A table of real cubic fields*, J. London Math. Soc.**34**(1959), 108–110. MR**0100579**, https://doi.org/10.1112/jlms/s1-34.1.108**[4]**Daniel Shanks,*On Gauss’s class number problems*, Math. Comp.**23**(1969), 151–163. MR**0262204**, https://doi.org/10.1090/S0025-5718-1969-0262204-1**[5]**H. Davenport and H. Heilbronn,*On the density of discriminants of cubic fields. II*, Proc. Roy. Soc. London Ser. A**322**(1971), no. 1551, 405–420. MR**0491593**, https://doi.org/10.1098/rspa.1971.0075**[6]**Daniel Shanks,*New types of quadratic fields having three invariants divisible by 3*, J. Number Theory**4**(1972), 537–556. MR**0313220**, https://doi.org/10.1016/0022-314X(72)90027-3**[7]**Daniel Shanks and Peter Weinberger,*A quadratic field of prime discriminant requiring three generators for its class group, and related theory*, Acta Arith.**21**(1972), 71–87. MR**0309899**, https://doi.org/10.4064/aa-21-1-71-87**[8]**Daniel Shanks,*Class groups of the quadratic fields found by F. Diaz y Diaz*, Math. Comp.**30**(1976), no. 133, 173–178. MR**0399039**, https://doi.org/10.1090/S0025-5718-1976-0399039-9**[9]**Richard B. Lakein,*Computation of the ideal class group of certain complex quartic fields. II*, Math. Comp.**29**(1975), 137–144. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR**0444605**, https://doi.org/10.1090/S0025-5718-1975-0444605-4

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-76-99665-4

Article copyright:
© Copyright 1976
American Mathematical Society