Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A rational approximation to Weierstrass' $ P$-function


Author: Ulrich Eckhardt
Journal: Math. Comp. 30 (1976), 818-826
MSC: Primary 65D20; Secondary 33A25
MathSciNet review: 0421042
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A rational approximation to Weierstrass' $ \wp$-function in the equianharmonic case for unit period parallelogram is given. With a third-degree numerator polynomial and a fourth-degree denominator polynomial the maximal error for $ \vert z\vert < 1/\sqrt 3 $ becomes $ 3 \cdot {10^{ - 14}}$.

The approximation of $ \wp(z)$ is then used to calculate a rational approximation to $ \wp'(z)$ together with an error bound.


References [Enhancements On Off] (What's this?)

  • [1] M. ABRAMOWITZ & I. A. STEGUN, Editors, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, vol. 55, U.S. Government Printing Office, 1964; reprint, Dover, New York, 1966. MR 34 #8606.
  • [2] N. I. Ahiezer, Elementy teorii ellipticheskikh funktsii, Second revised edition], Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0288319
  • [3] Tables of the mathematical functions. Vol. II, The Principia Press of Trinity University, San Antonio, Tex., 1963. MR 0158099
  • [4] U. ECKHARDT, Zur Berechnung der Weierstrassschen Zeta- und Sigma-Funktion, Berichte der KFA Jülich, Jül-964-MA, June 1973.
  • [5] Otto Emersleben, Erweiterung des Konvergenzbereichs einer Potenzreihe durch Herausnahme von Singularitäten, insbesondere zur Berechnung einer Zetafunktion zweiter Ordnung, Math. Nachr. 31 (1966), 195–220 (German). MR 0195824
  • [6] Ernst Graeser, Einführung in die Theorie der elliptischen Funktionen und deren Anwendungen, Verlag von R. Oldenbourg, München, 1950 (German). MR 0039848
  • [7] Alfred George Greenhill, The applications of elliptic functions, Dover Publications, Inc., New York, 1959. MR 0111864
  • [8] Fritz Oberhettinger and Wilhelm Magnus, Anwendung der elliptischen Funktionen in Physik und Technik, Springer-Verlag, Berlin, 1949 (German). MR 0031129
  • [9] Thomas H. Southard, Approximation and table of the Weierstrass ℘ function in the equianharmonic case for real argument, Math. Tables Aids Comput. 11 (1957), 99–100. MR 0086416, 10.1090/S0025-5718-1957-0086416-7
  • [10] T. H. SOUTHARD, "Weierstrass elliptic and related functions," in [1, Chapter 18].
  • [11] V. K. TKAČENKO, "On vortex lattices," Ž. Èksper. Teoret. Fiz., v. 49, 1965, pp. 1875-1883. (Russian)
  • [12] F. TÖLKE, Praktische Funktionenlehre. Band II: Theta-Funktionen und spezielle Weierstrasssche Funktionen, Springer-Verlag, Berlin and New York, 1966. MR 35 #3089.
  • [13] Francesco Tricomi, Elliptische Funktionen, Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, Band 20, Akademische Verlagsgesellschaft, Geest & Portig K.-G., Leipzig, 1948 (German). Translated and edited by Maximilian Krafft. MR 0029001

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20, 33A25

Retrieve articles in all journals with MSC: 65D20, 33A25


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1976-0421042-0
Article copyright: © Copyright 1976 American Mathematical Society