Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Some stable methods for calculating inertia and solving symmetric linear systems

Authors: James R. Bunch and Linda Kaufman
Journal: Math. Comp. 31 (1977), 163-179
MSC: Primary 65F05
MathSciNet review: 0428694
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several decompositions of symmetric matrices for calculating inertia and solving systems of linear equations are discussed. New partial pivoting strategies for decomposing symmetric matrices are introduced and analyzed.

References [Enhancements On Off] (What's this?)

  • [1] Jan Ole Aasen, On the reduction of a symmetric matrix to tridiagonal form, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 233–242. MR 0288944
  • [2] J. R. Bunch, Analysis of the diagonal pivoting method, SIAM J. Numer. Anal. 8 (1971), 656–680. MR 0292280
  • [3] James R. Bunch, Partial pivoting strategies for symmetric matrices, SIAM J. Numer. Anal. 11 (1974), 521–528. MR 0362856
  • [4] J. R. BUNCH & L. KAUFMAN, "Some stable methods for calculating inertia and solving symmetric linear systems," Univ. of Colorado Tech. Report 63, CU:CS:06375.
  • [5] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite systems of linear equations, SIAM J. Numer. Anal. 8 (1971), 639–655. MR 0305564
  • [6] P. A. Businger, Monitoring the numerical stability of Gaussian elimination, Numer. Math. 16 (1970/1971), 360–361. MR 0284000
  • [7] Richard W. Cottle, Manifestations of the Schur complement, Linear Algebra and Appl. 8 (1974), 189–211. MR 0354727
  • [8] L. Mirsky, An introduction to linear algebra, Oxford, at the Clarendon Press, 1955. MR 0074364
  • [9] B. N. PARLETT & J. K. REID, "On the solution of a system of linear equations whose matrix is symmetric but not definite," BIT, v. 10, 1970, pp. 386-397.
  • [10] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65F05

Retrieve articles in all journals with MSC: 65F05

Additional Information

Article copyright: © Copyright 1977 American Mathematical Society