Some stable methods for calculating inertia and solving symmetric linear systems

Authors:
James R. Bunch and Linda Kaufman

Journal:
Math. Comp. **31** (1977), 163-179

MSC:
Primary 65F05

MathSciNet review:
0428694

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several decompositions of symmetric matrices for calculating inertia and solving systems of linear equations are discussed. New partial pivoting strategies for decomposing symmetric matrices are introduced and analyzed.

**[1]**Jan Ole Aasen,*On the reduction of a symmetric matrix to tridiagonal form*, Nordisk Tidskr. Informationsbehandling (BIT)**11**(1971), 233–242. MR**0288944****[2]**J. R. Bunch,*Analysis of the diagonal pivoting method*, SIAM J. Numer. Anal.**8**(1971), 656–680. MR**0292280****[3]**James R. Bunch,*Partial pivoting strategies for symmetric matrices*, SIAM J. Numer. Anal.**11**(1974), 521–528. MR**0362856****[4]**J. R. BUNCH & L. KAUFMAN, "Some stable methods for calculating inertia and solving symmetric linear systems," Univ. of Colorado Tech. Report 63, CU:CS:06375.**[5]**J. R. Bunch and B. N. Parlett,*Direct methods for solving symmetric indefinite systems of linear equations*, SIAM J. Numer. Anal.**8**(1971), 639–655. MR**0305564****[6]**P. A. Businger,*Monitoring the numerical stability of Gaussian elimination*, Numer. Math.**16**(1970/1971), 360–361. MR**0284000****[7]**Richard W. Cottle,*Manifestations of the Schur complement*, Linear Algebra and Appl.**8**(1974), 189–211. MR**0354727****[8]**L. Mirsky,*An introduction to linear algebra*, Oxford, at the Clarendon Press, 1955. MR**0074364****[9]**B. N. PARLETT & J. K. REID, "On the solution of a system of linear equations whose matrix is symmetric but not definite,"*BIT*, v. 10, 1970, pp. 386-397.**[10]**J. H. Wilkinson,*The algebraic eigenvalue problem*, Clarendon Press, Oxford, 1965. MR**0184422**

Retrieve articles in *Mathematics of Computation*
with MSC:
65F05

Retrieve articles in all journals with MSC: 65F05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0428694-0

Article copyright:
© Copyright 1977
American Mathematical Society