One-step piecewise polynomial multiple collocation methods for initial value problems

Author:
J. P. Hennart

Journal:
Math. Comp. **31** (1977), 24-36

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431686-9

MathSciNet review:
0431686

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: New methods are proposed for the numerical solution of systems of first-order differential equations. On each subinterval of a given mesh of size *h*, a polynomial of degree *l* is constructed, its parameters being determined by a multiple collocation technique. The resulting piecewise polynomial approximation is of order at the mesh points and between them. In addition, the *j*th derivatives of the approximation on each subinterval provide approximations of order , . Some of the methods proposed are shown to be *A*-stable or even strongly *A*-stable.

**[1]**George D. Andria, George D. Byrne, and David R. Hill,*Natural spline block implicit methods*, Nordisk Tidskr. Informationsbehandling (BIT)**13**(1973), 131–144. MR**0323110****[2]**George D. Andria, George D. Byrne, and David R. Hill,*Integration formulas and schemes based on 𝑔-splines*, Math. Comp.**27**(1973), 831–838; addendum, ibid. 27 (1973), no. 124, loose microfiche supplement, A1–C4. MR**0339460**, https://doi.org/10.1090/S0025-5718-1973-0339460-5**[3]**J. H. ARGYRIS & D. W. SCHARPF, "Finite elements in time and space,"*J. Royal Aeronautical Soc.*, v. 73, 1969, pp. 1041-1044.**[4]**Garrett Birkhoff and Richard S. Varga,*Discretization errors for well-set Cauchy problems. I*, J. Math. and Phys.**44**(1965), 1–23. MR**0179952****[5]**J. C. BRUCH & G. ZYVOLOSKI, "Finite element solution of unsteady and unsaturated flow in porous media,"*The Mathematics of Finite Elements and Applications*, J. R. Whiteman (Editor), Academic Press, London and New York, 1973, pp. 201-211.**[6]**George D. Byrne and Donald N. H. Chi,*Linear multistep formulas based on 𝑔-splines*, SIAM J. Numer. Anal.**9**(1972), 316–324. MR**0311111**, https://doi.org/10.1137/0709031**[7]**E. David Callender,*Single step methods and low order splines for solutions of ordinary differential equations*, SIAM J. Numer. Anal.**8**(1971), 61–66. MR**0315897**, https://doi.org/10.1137/0708008**[8]**Philip J. Davis,*Interpolation and approximation*, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1963. MR**0157156****[9]**Germund G. Dahlquist,*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informations-Behandling**3**(1963), 27–43. MR**0170477****[10]**Jim Douglas Jr. and Todd Dupont,*Galerkin methods for parabolic equations*, SIAM J. Numer. Anal.**7**(1970), 575–626. MR**0277126**, https://doi.org/10.1137/0707048**[11]**Byron L. Ehle,*𝐴-stable methods and Padé approximations to the exponential*, SIAM J. Math. Anal.**4**(1973), 671–680. MR**0331787**, https://doi.org/10.1137/0504057**[12]**G. Fix and N. Nassif,*On finite element approximations to time-dependent problems*, Numer. Math.**19**(1972), 127–135. MR**0311122**, https://doi.org/10.1007/BF01402523**[13]**J. P. HENNART, "Piecewise polynomials for point and space kinetics with variable reactivity,"*Trans. Amer. Nuclear Soc.*, v. 19, 1974, pp. 179-180.**[14]**J. P. HENNART, "Piecewise polynomial multiple collocation methods for initial value problems," Notas de Matemática y Simposia, v. 2, Sociedad Matemática Mexicana. (To appear.)**[15]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[16]**Bernie L. Hulme,*Piecewise polynomial Taylor methods for initial value problems*, Numer. Math.**17**(1971), 367–381. MR**0298953**, https://doi.org/10.1007/BF01436086**[17]**Bernie L. Hulme,*One-step piecewise polynomial Galerkin methods for initial value problems*, Math. Comp.**26**(1972), 415–426. MR**0321301**, https://doi.org/10.1090/S0025-5718-1972-0321301-2**[18]**Bernie L. Hulme,*Discrete Galerkin and related one-step methods for ordinary differential equations*, Math. Comp.**26**(1972), 881–891. MR**0315899**, https://doi.org/10.1090/S0025-5718-1972-0315899-8**[19]**P. M. Hummel and C. L. Seebeck Jr.,*A generalization of Taylor’s expansion*, Amer. Math. Monthly**56**(1949), 243–247. MR**0028907**, https://doi.org/10.2307/2304764**[20]**C. M. KANG & K. F. HANSEN, "Finite element methods for reactor analysis,"*Nuclear Sci. and Engrg.*, v. 51, 1973, pp. 456-495.**[21]**Frank R. Loscalzo and Thomas D. Talbot,*Spline function approximations for solutions of ordinary differential equations*, SIAM J. Numer. Anal.**4**(1967), 433–445. MR**0221756**, https://doi.org/10.1137/0704038**[22]**Frank R. Loscalzo,*An introduction to the application of spline functions to initial value problems*, Theory and Applications of Spline Functions (Proceedings of Seminar, Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968) Academic Press, New York, 1969, pp. 37–64. MR**0240989****[23]**J. T. ODEN, "A general theory of finite elements. Part II, Applications,"*Internat. J. Numer. Methods Engrg.*, v. 1, 1969, pp. 247-259.**[24]**Harvey S. Price and Richard S. Varga,*Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics*, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 74–94. MR**0266452****[25]**Blair Swartz and Burton Wendroff,*Generalized finite-difference schemes*, Math. Comp.**23**(1969), 37–49. MR**0239768**, https://doi.org/10.1090/S0025-5718-1969-0239768-7**[26]**Richard S. Varga,*On higher order stable implicit methods for solving parabolic partial differential equations*, J. Math. and Phys.**40**(1961), 220–231. MR**0140191****[27]**G. WARZEE, "Finite element analysis of transient heat conduction. Application of the weighted residual process,"*Comput. Methods Appl. Mech. Engrg.*, v. 3, 1974, pp. 255-268.**[28]**Olof B. Widlund,*A note on unconditionally stable linear multistep methods*, Nordisk Tidskr. Informations-Behandling**7**(1967), 65–70. MR**0215533****[29]**K. Wright,*Some relationships between implicit Runge-Kutta, collocation Lanczos 𝜏 methods, and their stability properties*, Nordisk Tidskr. Informationsbehandling (BIT)**10**(1970), 217–227. MR**0266439****[30]**O. C. ZIENKIEWICZ & C. J. PAREKH, "Transient field problems two and three dimensional analysis by isoparametric finite elements,"*Internat. J. Numer. Methods Engrg.*, v. 2, 1970, pp. 61-71.**[31]**O. C. Zienkiewicz,*The finite element method in engineering science*, McGraw-Hill, London-New York-Düsseldorf, 1971. The second, expanded and revised, edition of The finite element method in structural and continuum mechanics. MR**0315970**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431686-9

Keywords:
Initial value problems,
ordinary differential equations,
piecewise polynomials,
collocation methods,
*A*-stability

Article copyright:
© Copyright 1977
American Mathematical Society