Higher order local accuracy by averaging in the finite element method

Authors:
J. H. Bramble and A. H. Schatz

Journal:
Math. Comp. **31** (1977), 94-111

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431744-9

MathSciNet review:
0431744

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Ritz-Galerkin approximation, corresponding to the solution *u* of an elliptic boundary value problem, which is based on a uniform subdivision in the interior of the domain. In this paper we show that by "averaging" the values of in the neighborhood of a point *x* we may (for a wide class of problems) construct an approximation to which is often a better approximation than itself. The "averaging" operator does not depend on the specific elliptic operator involved and is easily constructed.

**[1]**I. BABUŠKA, "The finite element method with Lagrangian multipliers,"*Numer. Math.*, v. 20, 1973, pp. 179-192. MR**50**#11806. MR**0359352 (50:11806)****[2]**J. BRAMBLE, "A survey of some finite element methods proposed for treating the Dirichlet problem,"*Advances in Math.*, v. 16, 1975, pp. 187-196. MR**0381348 (52:2245)****[3]**J. H. BRAMBLE & S. HILBERT, "Bounds for a class of linear functionals with applications to Hermite interpolation,"*Numer. Math.*, v. 16, 1971, pp. 362-369. MR**0290524 (44:7704)****[4]**J. H. BRAMBLE, J. A. NITSCHE & A. H. SCHATZ, "Maximum-norm interior estimates for Ritz-Galerkin methods,"*Math. Comp.*, v. 29, 1975, pp. 677-688. MR**0398120 (53:1975)****[5]**J. H. BRAMBLE & J. E. OSBORNE, "Rate of convergence estimates for nonselfadjoint eigenvalue approximations,"*Math. Comp.*, v. 27, 1973, pp. 525-549. MR**51**#2280. MR**0366029 (51:2280)****[6]**J. H. BRAMBLE & A. H. SCHATZ, "Estimates for spline projection,"*Rev. Française Automat. Informat. Recherche Opérationnelle Analyse Numérique*, v. 10, no 8, août 1976, pp. 5-37. MR**0436620 (55:9563)****[7]**J. H. BRAMBLE & A. H. SCHATZ, "Higher order local accuracy by averaging in the finite element method,"*Mathematical Aspects of Finite Elements in Partial Differential Equations*(Proc. Sympos., Math. Res. Center, Univ. of Wisconsin, Madison, 1974), edited by Carl de Boor, Academic Press, New York, 1974, pp. 1-14. MR**50**#1525. MR**0657964 (58:31903)****[8]**J. H. BRAMBLE & M. ZLÁMAL, "Triangular elements in the finite element method,"*Math. Comp.*, v. 24, 1970, pp. 809-820. MR**43**#8250. MR**0282540 (43:8250)****[9]**C. de BOOR & B. SWARTZ, "Collocation at Gaussian points,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 582-606. MR**51**#9528. MR**0373328 (51:9528)****[10]**J. DOUGLAS, JR. & T. DUPONT, "Some superconvergence results for Galerkin methods for the approximate solution of two point boundary problems." (Preprint.) MR**0366044 (51:2295)****[11]**J. DOUGLAS, JR., T. DUPONT & M. F. WHEELER, "Some super-convergence results for an -Galerkin procedure for the heat equation,"*Computing Methods in Applied Sciences and Engineering*. Part I (Proc. Internat. Sympos., Versailles, 1973), Springer-Verlag, Berlin and New York, 1974, pp. 288-311. MR**49**#4197. MR**0451774 (56:10056)****[12]**A. FRIEDMAN,*Partial Differential Equations*, Holt, Rinehart and Winston, New York, 1969. MR**0445088 (56:3433)****[13]**J. L. LIONS & E. MAGENES,*Non-Homogeneous Boundary Value Problems and Applications*. Vol. I, Springer-Verlag, Berlin and New York, 1972. MR**50**#2670. MR**0350177 (50:2670)****[14]**J. A. NITSCHE, "Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind,"*Abh. Math. Sem. Univ. Hamburg*, v. 36, 1971, pp. 9-15. MR**49**#6649. MR**0341903 (49:6649)****[15]**J. A. NITSCHE & A. H. SCHATZ, "Interior estimates for Ritz-Galerkin methods,"*Math. Comp.*, v. 28, 1974, pp. 937-958. MR**51**#9525. MR**0373325 (51:9525)****[16]**I. J. SCHOENBERG, "Contributions to the problem of approximation of equidistant data by analytic functions," Parts A, B,*Quart. Appl. Math.*, v. 4, 1946, pp. 45-99, 112-141. MR**7**, 487; 8, 55.**[17]**V. THOMÉE, "Spline approximation and difference schemes for the heat equation,"*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*(Proc. Sympos., Univ. of Maryland, 1972), edited by A. K. Aziz, Academic Press, New York, 1972, pp. 711-746. MR**49**#11824. MR**0403265 (53:7077)****[18]**V. THOMÉE & B. WENDROFF, "Convergence estimates for Galerkin methods for variable coefficient initial value problems,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 1059-1068. MR**51**#7309. MR**0371088 (51:7309)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431744-9

Article copyright:
© Copyright 1977
American Mathematical Society