Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Primal hybrid finite element methods for $ 2$nd order elliptic equations


Authors: P.-A. Raviart and J. M. Thomas
Journal: Math. Comp. 31 (1977), 391-413
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1977-0431752-8
MathSciNet review: 0431752
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper is devoted to the construction of finite element methods for 2nd order elliptic equations based on a primal hybrid variational principle. Optimal error bounds are proved. As a corollary, we obtain a general analysis of nonconforming finite element methods.


References [Enhancements On Off] (What's this?)

  • [1] F. BREZZI, "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Anal. Numér., v. 8, 1974, no. R-2, pp. 129-151. MR 51 #1540. MR 0365287 (51:1540)
  • [2] F. BREZZI, "Sur la méthode des éléments finis hybrides pour le problème biharmonique," Numer. Math., v. 24, 1975, pp. 103-151. MR 0391538 (52:12359)
  • [3] F. BREZZI & L. D. MARINI, "On the numerical solution of plate bending problems by hybrid methods," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Anal. Numér., v. 9, 1975, no. R-3, pp. 5-50.
  • [4] P. G. CIARLET, Numerical Analysis of the Finite Element Method, Séminaire de Mathématiques Supérieures, Univ. de Montréal Press, Montréal, 1975. MR 0495010 (58:13778)
  • [5] P. G. CIARLET & P. A. RAVIART, "General Lagrange and Hermite interpolation in $ {R^n}$ with applications to finite element methods," Arch. Rational Mech. Anal., v. 46, 1972, pp. 177-199. MR 49 #1730. MR 0336957 (49:1730)
  • [6] M. CROUZEIX & P. A. RAVIART, "Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Anal. Numér., v. 7, 1973, no. R-3, pp. 33-75. MR 49 #8401. MR 0343661 (49:8401)
  • [7] B. FRAEIJS DE VEUBEKE, "Variational principles and the patch test," Internat. J. Numer. Methods Engrg., v. 8, 1974, pp. 783-801. MR 51 #12099. MR 0375911 (51:12099)
  • [8] B. M. IRONS & A. RAZZAQUE, "Experience with the patch test for convergence of finite elements," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 557-587. MR 49 #11824. MR 0423839 (54:11813)
  • [9] P. LESAINT, "On the convergence of Wilson's nonconforming element for solving the elastic problems," Comput. Methods Appl. Mech. Engrg., v. 7, 1976, pp. 1-16. MR 0455479 (56:13717)
  • [10] T. H. H. PIAN, "Formulations of finite element methods for solid continua," Recent Advances in Matrix Methods of Structural Analysis and Design (R. H. Gallagher, Y. Yamada and J. T. Oden, Editors), The University of Alabama Press, 1971, pp. 49-83.
  • [11] T. H. H. PIAN, "Finite element formulation by variational principles with relaxed continuity requirements," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 671-687. MR 49 #11824. MR 0413552 (54:1666)
  • [12] T. H. H. PIAN & P. TONG, "Basis of finite element methods for solid continua," Internat. J. Numer. Methods. Engrg., v. 1, 1969, pp. 3-28.
  • [13] P. A. RAVIART, "Hybrid finite element methods for solving 2nd order elliptic equations," Conf. on Numerical Analysis, Royal Irish Academy, Dublin, 1974.
  • [14] G. STRANG, "Variational crimes in the finite element methods," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 689-710. MR 49 #11824. MR 0413554 (54:1668)
  • [15] G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR 0443377 (56:1747)
  • [16] J. M. THOMAS, "Méthode des éléments finis hybrides duaux pour les problèmes elliptiques du 2nd ordre," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Anal. Numér., v. 10, 1976, pp. 51-79.
  • [17] J. M. THOMAS, Méthode des Eléments Finis Equilibre pour les Problèmes Elliptiques du 2nd Ordre, Journées des Eléments Finis, May 12-14 1975, Rennes, France. MR 568862
  • [18] J. M. THOMAS, Thesis, Univ. P. & M. Curie, Paris, 1977.
  • [19] E. L. WILSON, R. L. TAYLOR, W. P. DOHERTY & J. GHABOUSSI, "Incompatible displacement models," Sympos. on Numerical Methods in Structural Engineering, O. N. R., University of Illinois, 1971.
  • [20] O. C. ZIENKIEWICZ, The Finite Element Method in Engineering Science, 2nd rev. ed., McGraw-Hill, London, 1971. MR 47 #4518. MR 0315970 (47:4518)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0431752-8
Keywords: Finite element methods, hybrid methods, Lagrange multipliers, nonconforming methods
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society