Interior maximum norm estimates for finite element methods
Authors:
A. H. Schatz and L. B. Wahlbin
Journal:
Math. Comp. 31 (1977), 414442
MSC:
Primary 65N30
MathSciNet review:
0431753
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Interior a priori error estimates in the maximum norm are derived from interior RitzGalerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on quasiuniform meshes. It is shown that the error in an interior domain can be estimated with the best order of accuracy that is possible locally for the subspaces used plus the error in a weaker norm over a slightly larger domain which measures the effects from outside of the domain .
 [1]
Ivo
Babuška and A.
K. Aziz, Survey lectures on the mathematical foundations of the
finite element method, The mathematical foundations of the finite
element method with applications to partial differential equations (Proc.
Sympos., Univ. Maryland, Baltimore, Md., 1972), Academic Press, New York,
1972, pp. 1–359. With the collaboration of G. Fix and R. B.
Kellogg. MR
0421106 (54 #9111)
 [2]
James
H. Bramble, A survey of some finite element methods proposed for
treating the Dirichlet problem, Advances in Math. 16
(1975), 187–196. MR 0381348
(52 #2245)
 [3]
James
H. Bramble, Joachim
A. Nitsche, and Alfred
H. Schatz, Maximumnorm interior estimates for
RitzGalerkin methods, Math. Comput. 29 (1975), 677–688.
MR
0398120 (53 #1975), http://dx.doi.org/10.1090/S00255718197503981207
 [4]
J.
H. Bramble and J.
E. Osborn, Rate of convergence estimates for
nonselfadjoint eigenvalue approximations, Math.
Comp. 27 (1973),
525–549. MR 0366029
(51 #2280), http://dx.doi.org/10.1090/S00255718197303660299
 [5]
J.
H. Bramble and A.
H. Schatz, Estimates for spline projections, Rev.
Française Automat. Informat. Recherche Opérationnelle
Sér. \jname RAIRO Analyse Numérique 10
(1976), no. R2, 5–37. MR 0436620
(55 #9563)
 [6]
J.
H. Bramble and V.
Thomée, Interior maximum norm estimates for some simple
finite element methods, Rev. Française Automat. Informat.
Recherche Opérationnelle Sér. Rouge 8
(1974), no. R2, 5–18 (English, with loose French summary). MR 0359354
(50 #11808)
 [7]
James
H. Bramble and Miloš
Zlámal, Triangular elements in the finite
element method, Math. Comp. 24 (1970), 809–820. MR 0282540
(43 #8250), http://dx.doi.org/10.1090/S00255718197002825400
 [8]
P.
G. Ciarlet and P.A.
Raviart, General Lagrange and Hermite interpolation in
𝑅ⁿ with applications to finite element methods, Arch.
Rational Mech. Anal. 46 (1972), 177–199. MR 0336957
(49 #1730)
 [9]
P.
G. Ciarlet and P.A.
Raviart, Maximum principle and uniform convergence for the finite
element method, Comput. Methods Appl. Mech. Engrg. 2
(1973), 17–31. MR 0375802
(51 #11992)
 [10]
Jim
Douglas Jr., Todd
Dupont, and Lars
Wahlbin, Optimal 𝐿_{∞} error
estimates for Galerkin approximations to solutions of twopoint boundary
value problems, Math. Comp. 29 (1975), 475–483. MR 0371077
(51 #7298), http://dx.doi.org/10.1090/S00255718197503710770
 [11]
Stephen
Hilbert, A mollifier useful for approximations
in Sobolev spaces and some applications to approximating solutions of
differential equations, Math. Comp. 27 (1973), 81–89. MR 0331715
(48 #10047), http://dx.doi.org/10.1090/S00255718197303317153
 [12]
Fritz
John, General properties of solutions of linear elliptic partial
differential equations, Proceedings of the Symposium on Spectral
Theory and Differential Problems, Oklahoma Agricultural and Mechanical
College, Stillwater, Okla., 1951, pp. 113–175. MR 0043990
(13,349d)
 [13]
Carlo
Miranda, Partial differential equations of elliptic type,
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, SpringerVerlag,
New York, 1970. Second revised edition. Translated from the Italian by Zane
C. Motteler. MR
0284700 (44 #1924)
 [14]
Frank
Natterer, Über die punktweise Konvergenz finiter
Elemente, Numer. Math. 25 (1975/76), no. 1,
67–77 (German, with English summary). MR 0474884
(57 #14514)
 [15]
J. A. NITSCHE, " convergence for finite element approximation," 2nd Conf. on Finite Elements (Rennes, France, May 1214, 1975).
 [16]
Joachim
A. Nitsche and Alfred
H. Schatz, Interior estimates for RitzGalerkin
methods, Math. Comp. 28 (1974), 937–958. MR 0373325
(51 #9525), http://dx.doi.org/10.1090/S00255718197403733259
 [17]
Martin
Schechter, On 𝐿^{𝑝} estimates and regularity.
I, Amer. J. Math. 85 (1963), 1–13. MR 0188615
(32 #6051)
 [18]
Ridgway
Scott, Optimal 𝐿^{∞} estimates
for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 0436617
(55 #9560), http://dx.doi.org/10.1090/S00255718197604366172
 [19]
Gilbert
Strang, Approximation in the finite element method, Numer.
Math. 19 (1972), 81–98. MR 0305547
(46 #4677)
 [20]
G. STRANG & G. FIX, "A Fourier analysis of the finite element variational method." (Unpublished manuscript.)
 [21]
Mary
Fanett Wheeler, An optimal 𝐿_{∞} error estimate for
Galerkin approximations to solutions of twopoint boundary value
problems, SIAM J. Numer. Anal. 10 (1973),
914–917. MR 0343659
(49 #8399)
 [1]
 I. BABUŠKA & A. K. AZIZ, "Survey lectures on the mathematical foundations of the finite element method," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part I (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 1359. MR 49 #11824. MR 0421106 (54:9111)
 [2]
 J. H. BRAMBLE, "A survey of some finite element methods proposed for treating the Dirichlet problem," Advances in Math., v. 16, 1975, pp. 187196. MR 52 #2245. MR 0381348 (52:2245)
 [3]
 J. H. BRAMBLE, J. A. NITSCHE & A. H. SCHATZ, "Maximumnorm interior estimates for RitzGalerkin methods," Math. Comp., v. 29, 1975, pp. 677688. MR 0398120 (53:1975)
 [4]
 J. H. BRAMBLE & J. E. OSBORN, "Rate of convergence estimates for nonselfadjoint eigenvalue approximations," Math. Comp., v. 27, 1973, pp. 525549. MR 51 #2280. MR 0366029 (51:2280)
 [5]
 J. H. BRAMBLE & A. H. SCHATZ, "Estimates for spline projections," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge, v. 10, 1976, pp. 537. MR 0436620 (55:9563)
 [6]
 J. H. BRAMBLE & V. THOMÉE, "Interior maximum norm estimates for some simple finite element methods," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge, v. 8, 1974, pp. 518. MR 50 #11808. MR 0359354 (50:11808)
 [7]
 J. H. BRAMBLE & M. ZLÁMAL, "Triangular elements in the finite element method," Math. Comp., v. 24, 1970, pp. 809820. MR 43 #8250. MR 0282540 (43:8250)
 [8]
 P. G. CIARLET & P. A. RAVIART, "General Lagrange and Hermite interpolation in with applications to finite element methods," Arch. Retional Mech. Anal., v. 46, 1972, pp. 177199. MR 49 #1730. MR 0336957 (49:1730)
 [9]
 P. G. CIARLET & P. A. RAVIART, "Maximum principle and uniform convergence for the finite element method," Comput. Methods Appl. Mech. Engrg., v. 2, 1973, pp. 1731. MR 51 #11992. MR 0375802 (51:11992)
 [10]
 J. DOUGLAS, JR., T. DUPONT & L. WAHLBIN, "Optimal error estimates for Galerkin approximations to solutions of twopoint boundary value problems," Math. Comp., v. 29, 1975, pp. 475483. MR 51 #7298. MR 0371077 (51:7298)
 [11]
 S. HILBERT, "A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations," Math. Comp., v. 27, 1973, pp. 8189. MR 48 #10047. MR 0331715 (48:10047)
 [12]
 F. JOHN, "General properties of solutions of linear elliptic partial differential equations," Proc. Sympos. on Spectral Theory and Differential Problems, Oklahoma A & M College, Stillwater, Okla., 1951, pp. 113175. MR 13, 349. MR 0043990 (13:349d)
 [13]
 C. MIRANDA, Partial Differential Equations of Elliptic Type, 2nd rev. ed., SpringerVerlag, Berlin and New York, 1970. MR 0284700 (44:1924)
 [14]
 F. NATTERER, "Über die punktweise Konvergenz Finiter Elemente," Numer. Math., v. 25, 1975, pp. 6777. MR 0474884 (57:14514)
 [15]
 J. A. NITSCHE, " convergence for finite element approximation," 2nd Conf. on Finite Elements (Rennes, France, May 1214, 1975).
 [16]
 J. A. NITSCHE & A. H. SCHATZ, "Interior estimates for RitzGalerkin methods," Math. Comp., v. 28, 1974, pp. 937958. MR 51 #9525. MR 0373325 (51:9525)
 [17]
 M. SCHECHTER, "On estimates and regularity. I," Amer. J. Math., v. 85, 1963, pp. 113. MR 32 #6051. MR 0188615 (32:6051)
 [18]
 R. SCOTT, "Optimal estimates for the finite element method on irregular meshes," Math. Comp., v. 30, 1976, pp. 681697. MR 0436617 (55:9560)
 [19]
 G. STRANG, "Approximation in the finite element method," Numer. Math., v. 19, 1972, pp. 8198. MR 46 #4677. MR 0305547 (46:4677)
 [20]
 G. STRANG & G. FIX, "A Fourier analysis of the finite element variational method." (Unpublished manuscript.)
 [21]
 M. F. WHEELER, "An optimal error estimate for Galerkin approximations to solutions of twopoint boundary value problems," SIAM J. Numer. Anal., v. 10, 1973, pp. 914917. MR 49 #8399. MR 0343659 (49:8399)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N30
Retrieve articles in all journals
with MSC:
65N30
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819770431753X
PII:
S 00255718(1977)0431753X
Article copyright:
© Copyright 1977 American Mathematical Society
