Uniform convergence of Galerkin's method for splines on highly nonuniform meshes
Author:
Frank Natterer
Journal:
Math. Comp. 31 (1977), 457468
MSC:
Primary 65L10
MathSciNet review:
0433899
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Different sets of conditions for an estimate of the form to hold are given. Here, is the Galerkin approximation to the solution y of a boundary value problem for an ordinary differential equation, the trial functions being polynomials of degree on the subintervals of length . The sequence of subdivisions need not be quasiuniform.
 [1]
Carl
de Boor, On uniform approximation by splines, J. Approximation
Theory 1 (1968), 219–235. MR 0240519
(39 #1866)
 [2]
Carl
de Boor, Good approximation by splines with variable knots.
II, Conference on the Numerical Solution of Differential Equations
(Univ. Dundee, Dundee, 1973) Springer, Berlin, 1974,
pp. 12–20. Lecture Notes in Math., Vol. 363. MR 0431606
(55 #4603)
 [3]
Carl
de Boor and Blâir
Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal.
10 (1973), 582–606. MR 0373328
(51 #9528)
 [4]
Jim
Douglas Jr., Todd
Dupont, and Lars
Wahlbin, Optimal 𝐿_{∞} error
estimates for Galerkin approximations to solutions of twopoint boundary
value problems, Math. Comp. 29 (1975), 475–483. MR 0371077
(51 #7298), http://dx.doi.org/10.1090/S00255718197503710770
 [5]
Frank
Natterer, Über die punktweise Konvergenz finiter
Elemente, Numer. Math. 25 (1975/76), no. 1,
67–77 (German, with English summary). MR 0474884
(57 #14514)
 [6]
J.
A. Nitsche, 𝐿_{∞}convergence of finite element
approximation, Journées “Éléments
Finis” (Rennes, 1975) Univ. Rennes, Rennes, 1975, pp. 18. MR 568857
(81e:65058)
 [7]
Ridgway
Scott, Optimal 𝐿^{∞} estimates
for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 0436617
(55 #9560), http://dx.doi.org/10.1090/S00255718197604366172
 [8]
Mary
Fanett Wheeler, An optimal 𝐿_{∞} error estimate for
Galerkin approximations to solutions of twopoint boundary value
problems, SIAM J. Numer. Anal. 10 (1973),
914–917. MR 0343659
(49 #8399)
 [1]
 C. de BOOR, "On uniform approximation by splines," J. Approximation Theory, v. 1, 1968, pp. 219235. MR 39 #1866. MR 0240519 (39:1866)
 [2]
 C. de BOOR, "Good approximation by splines with variable knots," Conf. on the Numerical Solution of Differential Equations (Scotland, 1973), Lecture Notes in Math., vol. 363, SpringerVerlag, Berlin and New York, 1974, pp. 1220. MR 0431606 (55:4603)
 [3]
 C. de BOOR & B. SWARTZ, "Collocation at Gaussian points," SIAM J. Numer. Anal., v. 10, 1973, pp. 582606. MR 51 #9528. MR 0373328 (51:9528)
 [4]
 J. DOUGLAS, JR., T. DUPONT & L. WAHLBIN, "Optimal error estimates for Galerkin approximations to solutions of twopoint boundary value problems," Math. Comp., v. 29, 1975, pp. 475483. MR 51 #7298. MR 0371077 (51:7298)
 [5]
 F. NATTERER, "Uber die punktweise Konvergenz Finiter Elemente," Numer. Math., v. 25, 1975, pp. 6777. MR 0474884 (57:14514)
 [6]
 J. NITSCHE, " convergence of finite element approximation. 2," Conf. on Finite Elements (Rennes, France, 1975). (To appear.) MR 568857 (81e:65058)
 [7]
 R. SCOTT, "Optimal estimates for the finite element method on irregular meshes," Math. Comp., v. 30, 1976, pp. 681697. MR 0436617 (55:9560)
 [8]
 M. F. WHEELER, "An optimal error estimate for Galerkin approximations to solutions of twopoint boundary value problems," SIAM J. Numer. Anal., v. 10, 1973, pp. 914917. MR 49 #8399. MR 0343659 (49:8399)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L10
Retrieve articles in all journals
with MSC:
65L10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197704338999
PII:
S 00255718(1977)04338999
Article copyright:
© Copyright 1977
American Mathematical Society
