Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On projective representations of finite wreath products


Authors: John R. Durbin and K. Bolling Farmer
Journal: Math. Comp. 31 (1977), 527-535
MSC: Primary 20C25
DOI: https://doi.org/10.1090/S0025-5718-1977-0453855-4
MathSciNet review: 0453855
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of induced projective representations is applied to finite wreath products, yielding algorithms which add to the collection of groups for which projective representations can be computed systematically. For finite Abelian and Abelian-wreath-cyclic groups, the factor sets are determined explicitly by establishing a one-to-one correspondence between certain lower triangular matrices and the inequivalent factor sets of these two classes of groups. This correspondence is used to determine the number and degrees of the inequivalent, irreducible projective representations.


References [Enhancements On Off] (What's this?)

  • [1] N. B. BACKHOUSE, "Projective representations of space groups. II, Factor systems," Quart. J. Math. Oxford Ser. (2), v. 21, 1970, pp. 277-295. MR 43 #7517. MR 0281803 (43:7517)
  • [2] N. B. BACKHOUSE, "Projective representations of space groups. III, Symmorphic space groups," Quart. J. Math. Oxford Ser. (2), v. 22, 1971, pp. 277-290. MR 45 #2028. MR 0292947 (45:2028)
  • [3] N. BLACKBURN, "Some homology groups of wreathe products," Illinois J. Math., v. 16, 1972, pp. 116-129. MR 45 #388. MR 0291294 (45:388)
  • [4] C. W. CURTIS & I. REINER, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York and London, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [5] J. D. DIXON, "Computing irreducible representations of groups," Math. Comp., v. 24, 1970, pp. 707-712. MR 43 #6330. MR 0280611 (43:6330)
  • [6] J. R. DURBIN, "On locally compact wreath products," Pacific J. Math., v. 57, 1975, pp. 99-107. MR 51 #13125. MR 0376950 (51:13125)
  • [7] R. FRUCHT, "Über die Darstellung endlicher abelscher Gruppen durch Kollineationen," J. Reine Angew. Math., v. 166, 1931, pp. 16-29.
  • [8] B. HUPPERT, Endliche Gruppen. I, Springer-Verlag, Berlin and New York, 1967. MR 37 #302. MR 0224703 (37:302)
  • [9] A. KERBER, "Zur Darstellungstheorie von Kranzprodukten," Canad. J. Math., v. 20, 1968, pp. 665-672. MR 38 #2223. MR 0233902 (38:2223)
  • [10] A. KERBER, Representations of Permutation Groups. I, Lecture Notes in Math., vol. 240, Springer-Verlag, Berlin and New York, 1971. MR 48 #4098. MR 0325752 (48:4098)
  • [11] L. JANSEN & M. BOON, Theory of Finite Groups. Applications in Physics, North-Holland, Amsterdam; Interscience, New York, 1967. MR 36 #6490. MR 0223442 (36:6490)
  • [12] G. W. MACKEY, "Unitary representations of group extensions. I," Acta Math., v. 99, 1958, pp. 265-311. MR 20 #4789. MR 0098328 (20:4789)
  • [13] È. M. ŽMUD', "Symplectic geometric and projective representations of finite abelian groups," Mat. Sb. (N.S.), v. 87 (129), 1972, pp. 3-17 = Math. USSR Sb.,v. 16, 1972, pp. 1-16. MR 45 #2044. MR 0292963 (45:2044)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20C25

Retrieve articles in all journals with MSC: 20C25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0453855-4
Keywords: Wreath products, Abelian groups, projective representations, factor sets, induced representations, algorithm
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society