Algorithms for computing shape preserving spline interpolations to data
Authors:
David F. McAllister, Eli Passow and John A. Roulier
Journal:
Math. Comp. 31 (1977), 717725
MSC:
Primary 65D05
MathSciNet review:
0448805
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Algorithms are presented for computing a smooth piecewise polynomial interpolation which preserves the monotonicity and/or convexity of the data.
 [1]
Robert
E. Barnhill and Richard
F. Riesenfeld (eds.), Computer aided geometric design,
Academic Press [A subsidiary of Harcourt Brace Jovanovich, Inc.], New
YorkLondon, 1974. MR 0349061
(50 #1555)
 [2]
Wayne
T. Ford and John
A. Roulier, On interpolation and approximation by polynomials with
monotone derivatives, J. Approximation Theory 10
(1974), 123–130. MR 0350259
(50 #2752)
 [3]
A.
R. Forrest, Interactive interpolation and approximation by
Bézier polynomials, Comput. J. 15 (1972),
71–79. MR
0315866 (47 #4415)
 [4]
William
J. Gordon and Richard
F. Riesenfeld, BernsteinBézier methods for the
computeraided design of freeform curves and surfaces, J. Assoc.
Comput. Mach. 21 (1974), 293–310. MR 0353625
(50 #6108)
 [5]
William
J. Kammerer, Polynomial approximations to finitely
oscillating functions, Math. Comp. 15 (1961), 115–119. MR 0123865
(23 #A1187), http://dx.doi.org/10.1090/S00255718196101238653
 [6]
G.
G. Lorentz, Bernstein polynomials, Mathematical Expositions,
no. 8, University of Toronto Press, Toronto, 1953. MR 0057370
(15,217a)
 [7]
Eli
Passow, Piecewise monotone spline interpolation, J.
Approximation Theory 12 (1974), 240–241. MR 0361544
(50 #13989)
 [8]
Eli
Passow, An improved estimate of the degree of monotone
interpolation, J. Approximation Theory 17 (1976),
no. 2, 115–118. MR 0417624
(54 #5674)
 [9]
Eli
Passow, Monotone quadratic spline interpolation, J.
Approximation Theory 19 (1977), no. 2, 143–147.
MR
0440246 (55 #13124)
 [10]
Eli
Passow and Louis
Raymon, The degree of piecewise monotone
interpolation, Proc. Amer. Math. Soc. 48 (1975), 409–412.
MR
0430608 (55 #3613), http://dx.doi.org/10.1090/S00029939197504306084
 [11]
Eli
Passow and John
A. Roulier, Monotone and convex spline interpolation, SIAM J.
Numer. Anal. 14 (1977), no. 5, 904–909. MR 0470566
(57 #10316)
 [12]
Steven
Pruess, Properties of splines in tension, J. Approximation
Theory 17 (1976), no. 1, 86–96. MR 0407491
(53 #11266)
 [13]
Zalman
Rubinstein, On polynomial 𝛿type functions and
approximation by monotonic polynomials, J. Approximation Theory
3 (1970), 1–6. MR 0261228
(41 #5844)
 [14]
H.
Späth, Exponential spline interpolation, Computing (Arch.
Elektron. Rechnen) 4 (1969), 225–233 (English, with
German summary). MR 0248966
(40 #2216)
 [15]
W.
Wolibner, Sur un polynôme d’interpolation,
Colloquium Math. 2 (1951), 136–137 (French). MR 0043946
(13,343e)
 [16]
Sam
W. Young, Piecewise monotone polynomial
interpolation, Bull. Amer. Math. Soc. 73 (1967), 642–643.
MR
0212455 (35 #3326), http://dx.doi.org/10.1090/S000299041967118068
 [1]
 R. E. BARNHILL & R. F. RIESENFELD (Editors), Computer Aided Geometric Design, Academic Press, New York and London, 1974. MR 50 #1555. MR 0349061 (50:1555)
 [2]
 W. T. FORD & J. A. ROULIER, "On interpolation and approximation by polynomials with monotone derivatives," J. Approximation Theory, v. 10, 1974, pp. 123130. MR 50 #2752. MR 0350259 (50:2752)
 [3]
 A. R. FORREST, "Interactive interpolation and approximation by Bézier polynomials," Comput. J., v. 15, 1972, pp. 7179. MR 47 #4415. MR 0315866 (47:4415)
 [4]
 W. J. GORDON & R. F. RIESENFELD, "BernsteinBézier methods for the computeraided design of freeform curves and surfaces," J. Assoc. Comput. Mach., v. 21, 1974, pp. 293310. MR 50 #6108. MR 0353625 (50:6108)
 [5]
 W. J. KAMMERER, "Polynomial approximations to finitely oscillating functions," Math. Comp., v. 15, 1961, pp. 115119. MR 23 #A1187. MR 0123865 (23:A1187)
 [6]
 G. G. LORENTZ, Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953. MR 15, 217. MR 0057370 (15:217a)
 [7]
 E. PASSOW, "Piecewise monotone spline interpolation," J. Approximation Theory, v. 12, 1974, pp. 240241. MR 50 #13989. MR 0361544 (50:13989)
 [8]
 E. PASSOW, "An improved estimate of the degree of monotone interpolation," J. Approximation Theory, v. 17, 1976, pp. 115118. MR 0417624 (54:5674)
 [9]
 E. PASSOW, "Monotone quadratic spline interpolation," J. Approximation Theory, v. 19, 1977, pp. 123134. MR 0440246 (55:13124)
 [10]
 E. PASSOW & L. RAYMON, "The degree of piecewise monotone interpolation," Proc. Amer. Math. Soc., v. 48, 1975, pp. 409412. MR 0430608 (55:3613)
 [11]
 E. PASSOW & J. A. ROULIER, "Monotone and convex spline interpolation," SIAM J. Numer. Anal. (To appear.) MR 0470566 (57:10316)
 [12]
 S. PRUESS, "Properties of splines in tension," J. Approximation Theory, v. 17, 1976, pp. 8696. MR 0407491 (53:11266)
 [13]
 Z. RUBINSTEIN, "On polynomial type functions and approximation by monotonic polynomials," J. Approximation Theory, v. 3, 1970, pp. 16. MR 41 #5844. MR 0261228 (41:5844)
 [14]
 H. SPÄTH, "Exponential spline interpolation," Computing, v. 4, 1969, pp. 225233. MR 40 #2216. MR 0248966 (40:2216)
 [15]
 W. WOLIBNER, "Sur un polynôme d'interpolation," Colloq. Math., v. 2, 1951, pp. 136137. MR 13, 343. MR 0043946 (13:343e)
 [16]
 S. W. YOUNG, "Piecewise monotone polynomial interpolation," Bull. Amer. Math. Soc., v. 73, 1967, pp. 642643. MR 35 #3326. MR 0212455 (35:3326)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D05
Retrieve articles in all journals
with MSC:
65D05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197704488050
PII:
S 00255718(1977)04488050
Article copyright:
© Copyright 1977 American Mathematical Society
