On the fluctuations of Littlewood for primes of the form
Authors:
Carter Bays and Richard H. Hudson
Journal:
Math. Comp. 32 (1978), 281286
MSC:
Primary 1004; Secondary 10H15
MathSciNet review:
0476615
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let denote the number of primes which are . Among the first 950,000,000 integers there are only a few thousand integers n with . The authors find three new widely spaced regions containing hundreds of millions of such integers; the density of these integers and the spacing of the regions is of some importance because of their intimate connection with the truth or falsity of the analogue of the Riemann hypothesis for . The discovery that the majority of all Integers n less than with are the 410,000,000 (consecutive) integers lying between 18,540,000,000 and 18,950,000,000 is a major surprise; results are carefully corroborated and some of the implications are discussed.
 [1]
Richard
P. Brent, Irregularities in the distribution of
primes and twin primes, Math. Comp. 29 (1975), 43–56.
Collection of articles dedicated to Derrick Henry Lehmer on the occasion of
his seventieth birthday. MR 0369287
(51 #5522), http://dx.doi.org/10.1090/S00255718197503692871
 [2]
P. L. CHEBYSHEV, "Lettre de M. le professeur Tchébychev à M. Fuss sur un nouveaux théorème rélatif aux nombres premiers contenus dans les formes et ," Bull. de la Classe Phys. de l'Acad. Imp. des Sciences, St. Petersburg, v. 11, 1853, p. 208.
 [3]
G. H. HARDY & J. E. LITTLEWOOD, "Contributions to the theory of the Riemannzeta function and the theory of the distribution of primes," Acta Math., v. 41, 1917, pp. 119196.
 [4]
Richard
H. Hudson and Alfred
Brauer, On the exact number of primes in the arithmetic
progressions 4𝑛±1 and 6𝑛±1, J. Reine
Angew. Math. 291 (1977), 23–29. MR 0441892
(56 #283)
 [5]
Richard
H. Hudson and Carter
Bays, The mean behavior of primes in arithmetic progressions,
J. Reine Angew. Math. 296 (1977), 80–99. MR 0460261
(57 #255)
 [6]
A.
E. Ingham, The distribution of prime numbers, Cambridge Tracts
in Mathematics and Mathematical Physics, No. 30, StechertHafner, Inc., New
York, 1964. MR
0184920 (32 #2391)
 [7]
S.
Knapowski and P.
Turán, Comparative primenumber theory. III. Continuation of
the study of comparison of the progressions ≡1
𝑚𝑜𝑑𝑘 and ≡𝑙
𝑚𝑜𝑑𝑘, Acta Math. Acad. Sci. Hungar.
13 (1962), 343–364. MR 0146158
(26 #3682c)
 [8]
S.
Knapowski and P.
Turán, Comparative primenumber theory. VII. The problem of
signchanges in the general case, Acta Math. Acad. Sci. Hungar
14 (1963), 241–250. MR 0156826
(28 #70a)
 [9]
S.
Knapowski and P.
Turán, Further developments in the comparative primenumber
theory. I, Acta Arith. 9 (1964), 23–40. MR 0162771
(29 #75)
 [10]
S.
Knapowski and P.
Turán, Further developments in the comparative primenumber
theory. II. A modification of Chebyshev’s assertion, Acta Arith.
10 (1964), 293–313. MR 0174538
(30 #4739)
 [11]
E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea, New York, 1953.
 [12]
E. LANDAU, "Über einige Ältere vermutungen und Behauptungen in der Primzahltheorie," Math Z., v. 1, 1919, pp. 124.
 [13]
John
Leech, Note on the distribution of prime numbers, J. London
Math. Soc. 32 (1957), 56–58. MR 0083001
(18,642d)
 [14]
D. H. LEHMER, Personal communication to Richard Hudson from Daniel Shanks (May 24, 1976).
 [15]
J. E. LITTLEWOOD, "Sur la distribution des nombres premiers," Comptes Rendus, v. 158, 1914, pp. 18691872.
 [16]
G. PÓLYA, "On polar singularities of power series and of Dirichlet series," Proc. London Math. Soc. (2), v. 33, 1932, pp. 85101.
 [17]
Daniel
Shanks, Quadratic residues and the
distribution of primes, Math. Tables Aids
Comput. 13 (1959),
272–284. MR 0108470
(21 #7186), http://dx.doi.org/10.1090/S00255718195901084708
 [1]
 RICHARD P. BRENT, Tables Concerning Irregularities in the Distribution of Primes and Twin Primes to , Computer Centre, Australian National University, Canberra, Australia 1975. MR 0369287 (51:5522)
 [2]
 P. L. CHEBYSHEV, "Lettre de M. le professeur Tchébychev à M. Fuss sur un nouveaux théorème rélatif aux nombres premiers contenus dans les formes et ," Bull. de la Classe Phys. de l'Acad. Imp. des Sciences, St. Petersburg, v. 11, 1853, p. 208.
 [3]
 G. H. HARDY & J. E. LITTLEWOOD, "Contributions to the theory of the Riemannzeta function and the theory of the distribution of primes," Acta Math., v. 41, 1917, pp. 119196.
 [4]
 RICHARD H. HUDSON & ALFRED BRAUER, "On the exact number of primes in the arithmetic progressions and ," J. Reine Angew. Math., v. 281, 1976, pp. 2329. MR 0441892 (56:283)
 [5]
 RICHARD H. HUDSON & CARTER BAYS, "The mean behavior of primes in arithmetic progressions," J. Reine Angew. Math., v. 295, 1977. MR 0460261 (57:255)
 [6]
 A. E. INGHAM, The Distribution of Prime Numbers, StechertHafner, New York, 1964. MR 0184920 (32:2391)
 [7]
 S. KNAPOWSKI & P. TURÁN, "Comparative primenumber theory. III. Continuation of the study of comparison of the progressions and ," Acta Math. Acad. Sci. Hungar., v. 13, 1962, pp. 343364. MR 0146158 (26:3682c)
 [8]
 S. KNAPOWSKI & P. TURÁN, "Comparative primenumber theory. VII. The problem of signchanges in the general case," Acta Math. Acad. Sci. Hungar., v. 14, 1963, pp. 241250. MR 0156826 (28:70a)
 [9]
 S. KNAPOWSKI & P. TURÁN, "Further developments in the comparative primenumber theory. I, " Acta Arith., v. 9, 1964, pp. 2340. MR 0162771 (29:75)
 [10]
 S. KNAPOWSKI & P. TURÁN, "Further developments in the comparative primenumber theory. II, A modification of Chebyshev's assertion," Acta Arith., v. 10, 1964, pp. 293313. MR 0174538 (30:4739)
 [11]
 E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea, New York, 1953.
 [12]
 E. LANDAU, "Über einige Ältere vermutungen und Behauptungen in der Primzahltheorie," Math Z., v. 1, 1919, pp. 124.
 [13]
 JOHN LEECH, "Note on the distribution of prime numbers," J. London Math. Soc., v. 32, 1957, pp. 5658. MR 0083001 (18:642d)
 [14]
 D. H. LEHMER, Personal communication to Richard Hudson from Daniel Shanks (May 24, 1976).
 [15]
 J. E. LITTLEWOOD, "Sur la distribution des nombres premiers," Comptes Rendus, v. 158, 1914, pp. 18691872.
 [16]
 G. PÓLYA, "On polar singularities of power series and of Dirichlet series," Proc. London Math. Soc. (2), v. 33, 1932, pp. 85101.
 [17]
 DANIEL SHANKS, "Quadratic residues and the distribution of primes," Math. Comp., v. 13, 1959, pp. 272284. MR 0108470 (21:7186)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
1004,
10H15
Retrieve articles in all journals
with MSC:
1004,
10H15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197804766158
PII:
S 00255718(1978)04766158
Article copyright:
© Copyright 1978 American Mathematical Society
