Implementing second-derivative multistep methods using the Nordsieck polynomial representation

Author:
G. K. Gupta

Journal:
Math. Comp. **32** (1978), 13-18

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1978-0478630-7

MathSciNet review:
0478630

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A polynomial representation for the second-derivative linear multistep methods for solving ordinary differential equations is presented. This representation leads to an implementation of the second-derivative methods using the Nordsieck polynomial representation. Possible advantages of such an implementation are then discussed.

**[1]**G. G. DAHLQUIST (1963), "A special stability problem for linear multistep methods,"*BIT*, v. 3, pp. 27-43. MR**0170477 (30:715)****[2]**W. H. ENRIGHT (1974a), "Second derivative multistep methods for stiff ordinary differential equations,"*SIAM J. Numer. Anal.*, v. 11, pp. 321-331. MR**0351083 (50:3574)****[3]**W. H. ENRIGHT (1974b), "Optimal second derivative methods for stiff systems," in*Stiff Differential Systems*, R. A. Willoughby (Editor), Plenum Press, New York, pp. 95-109.**[4]**W. H. ENRIGHT, T. E. HULL & B. LINDBERG (1975), "Comparing numerical methods for stiff systems of ODE:s,"*BIT*, v. 15, pp. 10-48.**[5]**C. W. GEAR (1971),*Numerical Initial Value Problems in Ordinary Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J. MR**0315898 (47:4447)****[6]**Y. GENIN(1974), "An algebraic approach to*A*-stable linear multistep-multiderivative integration formulas,"*BIT*, v. 14, pp. 382-406. MR**0368438 (51:4679)****[7]**G. K. GUPTA (1976), "Some new high-order multistep formulae for solving stiff equations,"*Math. Comp.*, v. 30, pp. 417-432. MR**0423812 (54:11786)****[8]**R. JELTSCH (1975),*Note on A-Stability of Multistep Multiderivative Methods*, unpublished report. MR**0411173 (53:14912)****[9]**J. D. LAMBERT (1973),*Computation Methods in Ordinary Differential Equations*, Wiley, New York. MR**0423815 (54:11789)****[10]**J. D. LAMBERT & S. T. SIGURDSSON (1972), "Multistep methods with variable matrix coefficients,"*SIAM J. Numer. Anal.*, v. 9, pp. 715-733. MR**0317548 (47:6095)****[11]**W. LINIGER & F. ODEH (1972), "*A*-stable, accurate averaging of multistep methods for stiff differential systems,"*IBM J. Res. Develop.*, v. 16, pp. 335-348. MR**0345416 (49:10152)****[12]**W. LINIGER & R. A. WILLOUGHBY (1970), "Efficient integration methods for stiff systems of ordinary differential equations,*SIAM J. Numer. Anal.*, v. 7, pp. 47-66. MR**0260181 (41:4809)****[13]**M. MAKELA, O. NEVANLINNA & A. H. SIPILA (1974), "Exponentially fitted multistep methods by generalized Hermite Birkhoff interpolation,"*BIT*, v. 14, pp. 437-451. MR**0411176 (53:14915)****[14]**G. J. MAKINSON (1968), "Stable high order implicit methods for the numerical solution of systems of differential equations,"*Comput. J.*, v. 11, pp. 305-310. MR**0235737 (38:4040)****[15]**A. NORDSIECK (1962), "On the numerical integration of ordinary differential equations,"*Math. Comp.*, v. 16, pp. 22-49. MR**0136519 (24:B2552)****[16]**C. S. WALLACE & G. K. GUPTA (1973), "General linear multistep methods to solve ordinary differential equations,"*Austral. Comput. J.*, v.5, pp. 62-69. MR**0362919 (50:15357)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0478630-7

Keywords:
Linear multistep methods,
stiff differential equations,
multiderivative methods,
numerical solutions of ordinary differential equations

Article copyright:
© Copyright 1978
American Mathematical Society