To compute the optimal interpolation formula

Author:
P. W. Gaffney

Journal:
Math. Comp. **32** (1978), 763-777

MSC:
Primary 65D05

DOI:
https://doi.org/10.1090/S0025-5718-1978-0474698-2

MathSciNet review:
0474698

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to explain how to compute the function which interpolates values of a function of one variable at *n* distinct points and which, whenever is bounded and the value of the bound is unknown, provides the *smallest possible value of * in the error bound

**[M]**M. G. Cox,*The numerical evaluation of 𝐵-splines*, J. Inst. Math. Appl.**10**(1972), 134–149. MR**0334456****[M]**M. G. Cox,*An algorithm for spline interpolation*, J. Inst. Math. Appl.**15**(1975), 95–108. MR**0359265****[C]**Carl de Boor,*On calculating with 𝐵-splines*, J. Approximation Theory**6**(1972), 50–62. Collection of articles dedicated to J. L. Walsh on his 75th birthday, V (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970). MR**0338617****[C]**Carl de Boor and Allan Pinkus,*Backward error analysis for totally positive linear systems*, Numer. Math.**27**(1976/77), no. 4, 485–490. MR**0436558**, https://doi.org/10.1007/BF01399609**[P]**P. W. Gaffney,*The calculation of indefinite integrals of 𝐵-splines*, J. Inst. Math. Appl.**17**(1976), no. 1, 37–41. MR**0415985****[P]**W. GAFFNEY (1976b),*Optimal Interpolation*, D. Phil. Thesis, Oxford University.**[P]**W. GAFFNEY (1977a),*The Range of Possible Values of*, A.E.R.E. Report C.S.S. 51.**[P]**W. GAFFNEY (1977b),*Fortran Subroutines for Computing the Optimal Interpolation Formula*, A.E.R.E. Report No. R.8781.**[P]**P. W. Gaffney and M. J. D. Powell,*Optimal interpolation*, Numerical analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975) Springer, Berlin, 1976, pp. 90–99. Lecture Notes in Math., Vol. 506. MR**0458001****[C]**C. A. Micchelli, T. J. Rivlin, and S. Winograd,*The optimal recovery of smooth functions*, Numer. Math.**26**(1976), no. 2, 191–200. MR**0458005**, https://doi.org/10.1007/BF01395972**[J]**J. M. Ortega and W. C. Rheinboldt,*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810****[I]**I. J. Schoenberg,*On spline functions*, Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965), Academic Press, New York, 1967, pp. 255–291. MR**0223801****[I]**I. J. Schoenberg and Anne Whitney,*On Pólya frequence functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves*, Trans. Amer. Math. Soc.**74**(1953), 246–259. MR**0053177**, https://doi.org/10.1090/S0002-9947-1953-0053177-X**[J]**F. STEFFENSON (1927),*Interpolation*, Chelsea, New York.

Retrieve articles in *Mathematics of Computation*
with MSC:
65D05

Retrieve articles in all journals with MSC: 65D05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0474698-2

Article copyright:
© Copyright 1978
American Mathematical Society