Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)


On an integral summable to $ 2\xi (s)/(s(s-1))$

Author: P. L. Walker
Journal: Math. Comp. 32 (1978), 1311-1316
MSC: Primary 10H05
MathSciNet review: 0491550
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \psi (x) = \Sigma _{n = 1}^\infty {e^{ - {n^2}\pi x}}$, and $ \chi (u) = {e^{u/2}}(1 + 2\psi ({e^{2u}}))$. The divergent integral $ 2\smallint _0^\infty \chi (u)\cos $ tu du is shown to be summable for certain complex values of t to the function $ 2\xi (s)/s(s - 1) = {\pi ^{ - s/2}}\Gamma (\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} s)\zeta (s)$, where $ s = \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} + $ it, and $ \zeta (s)$ is the zeta-function of Riemann. The values of a resulting approximation to $ 2\xi (s)/s(s - 1)$ are computed and its zeros located.

References [Enhancements On Off] (What's this?)

  • [1] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642 (29 #4914)
  • [2] A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956. MR 0078494 (17,1202c)
  • [3] G. PÓLYA AND G. SZEGÖ, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, Berlin, 1925.
  • [4] B. RIEMANN, "Über die Anzahl der Primzahlen unter einer gegebenen Grosse," Collected Works, Dover, New York, 1953.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10H05

Retrieve articles in all journals with MSC: 10H05

Additional Information

PII: S 0025-5718(1978)0491550-7
Article copyright: © Copyright 1978 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia