Free subgroups of the free product of cyclic groups

Author:
W. W. Stothers

Journal:
Math. Comp. **32** (1978), 1274-1280

MSC:
Primary 20E06

DOI:
https://doi.org/10.1090/S0025-5718-1978-0502015-8

MathSciNet review:
502015

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two kinds of recurrence relation for the number of subgroups of finite index in a free product of finitely many cyclic groups are given. An asymptotic formula is obtained from the first of these relations.

**[1]**I. M. S. DEY, "Schreier systems in free products,"*Proc. Glasgow Math. Assoc.*, v. 7, 1967, pp. 61-79. MR**32**#5718. MR**0188279 (32:5718)****[2]**R. H. FOX, "On Fenchel's conjecture about*F*-groups,"*Mat. Tidsskr. B*, v. 1952, pp. 61-65. MR**14**, 843. MR**0053937 (14:843c)****[3]**M. HALL, JR., "Subgroups of finite index in free groups,"*Canad. J. Math.*, v. 1, 1949, pp. 187-190. MR**10**, 506. MR**0028836 (10:506a)****[4]**L. MOSER & M. WYMAN, "Asymptotic expansions,"*Canad. J. Math.*, v. 8, 1956, pp. 225-233. MR**19**, 268. MR**0078488 (17:1201b)****[5]**M. NEWMAN, "Asymptotic formulas related to free products of cyclic groups,"*Math. Comp.*, v. 30, 1976, pp. 838-846. MR**0466047 (57:5930)****[6]**W. W. STOTHERS, "The number of subgroups of given index in the modular group,"*Proc. Roy. Soc. Edinburgh*, v. 78A, 1977, pp. 105-112. MR**0480341 (58:514)****[7]**W. W. STOTHERS, "Subgroups of infinite index in the modular group,"*Glasgow Math. J.*, v. 19, 1978, pp. 33-43. MR**508344 (80b:20060)**

Retrieve articles in *Mathematics of Computation*
with MSC:
20E06

Retrieve articles in all journals with MSC: 20E06

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0502015-8

Article copyright:
© Copyright 1978
American Mathematical Society