A search for large twin prime pairs

Authors:
R. E. Crandall and M. A. Penk

Journal:
Math. Comp. **33** (1979), 383-388

MSC:
Primary 10A25; Secondary 10J10

MathSciNet review:
514834

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two methods are discussed for finding large integers *m* such that and are both primes. Eight such numbers *m* of magnitudes 22, 22, 32, 64, 136, 154, 203, and 303 digits are listed; together with primitive roots (for ) and Lucas-Lehmer parameters (for ). The Hardy-Littlewood twin prime conjecture is supported by a statistical test involving the generation of 249 twin prime pairs in the 50-to-54 digit region.

**[1]**V. BRUN, "La série est convergente ou finie,"*Bull. Sci. Math.*, v. 43, 1919, pp. 104, 124-128; Chapter XVI.**[2]**G. H. Hardy and J. E. Littlewood,*Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes*, Acta Math.**44**(1923), no. 1, 1–70. MR**1555183**, 10.1007/BF02403921**[3]**D. H. LEHMER, "Tables concerning the distribution of primes up to 37 millions,"*MTAC*, v. 13, 1959, pp. 56-57, UMT 3.**[4]**G. H. HARDY & E. M. WRIGHT',*An Introduction to the Theory of Numbers*, 4th ed., Clarendon Press, Oxford, 1965.**[5]**Richard P. Brent,*Irregularities in the distribution of primes and twin primes*, Math. Comp.**29**(1975), 43–56. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR**0369287**, 10.1090/S0025-5718-1975-0369287-1**[6]**D. H. Lehmer,*Computer technology applied to the theory of numbers*, Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 117–151. MR**0246815****[7]**Donald E. Knuth,*The art of computer programming. Vol. 2*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**633878****[8]**Richard K. Guy,*How to factor a number*, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975) Utilitas Math. Publ., Winnipeg, Man., 1976, pp. 49–89. Congressus Numerantium, No. XVI. MR**0404120****[9]**J. M. Pollard,*A Monte Carlo method for factorization*, Nordisk Tidskr. Informationsbehandling (BIT)**15**(1975), no. 3, 331–334. MR**0392798**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25,
10J10

Retrieve articles in all journals with MSC: 10A25, 10J10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514834-3

Keywords:
prime,
twin primes,
Hardy-Littlewood conjecture

Article copyright:
© Copyright 1979
American Mathematical Society