Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A search for large twin prime pairs


Authors: R. E. Crandall and M. A. Penk
Journal: Math. Comp. 33 (1979), 383-388
MSC: Primary 10A25; Secondary 10J10
MathSciNet review: 514834
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two methods are discussed for finding large integers m such that $ m - 1$ and $ m + 1$ are both primes. Eight such numbers m of magnitudes 22, 22, 32, 64, 136, 154, 203, and 303 digits are listed; together with primitive roots (for $ m + 1$) and Lucas-Lehmer parameters (for $ m - 1$). The Hardy-Littlewood twin prime conjecture is supported by a statistical test involving the generation of 249 twin prime pairs in the 50-to-54 digit region.


References [Enhancements On Off] (What's this?)

  • [1] V. BRUN, "La série $ 1/5 + 1/7 + 1/11 + 1/13 + \cdots $ est convergente ou finie," Bull. Sci. Math., v. 43, 1919, pp. 104, 124-128; Chapter XVI.
  • [2] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, 10.1007/BF02403921
  • [3] D. H. LEHMER, "Tables concerning the distribution of primes up to 37 millions," MTAC, v. 13, 1959, pp. 56-57, UMT 3.
  • [4] G. H. HARDY & E. M. WRIGHT', An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1965.
  • [5] Richard P. Brent, Irregularities in the distribution of primes and twin primes, Math. Comp. 29 (1975), 43–56. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR 0369287, 10.1090/S0025-5718-1975-0369287-1
  • [6] D. H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 117–151. MR 0246815
  • [7] Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR 633878
  • [8] Richard K. Guy, How to factor a number, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975) Utilitas Math. Publ., Winnipeg, Man., 1976, pp. 49–89. Congressus Numerantium, No. XVI. MR 0404120
  • [9] J. M. Pollard, A Monte Carlo method for factorization, Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 3, 331–334. MR 0392798

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10A25, 10J10

Retrieve articles in all journals with MSC: 10A25, 10J10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1979-0514834-3
Keywords: prime, twin primes, Hardy-Littlewood conjecture
Article copyright: © Copyright 1979 American Mathematical Society