Convergence of a finite element method for the approximation of normal modes of the oceans

Author:
Mitchell Luskin

Journal:
Math. Comp. **33** (1979), 493-519

MSC:
Primary 86A05; Secondary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521272-6

MathSciNet review:
521272

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives optimal order error estimates for the approximation of the spectral properties of a variant of the shallow water equations by a finite element procedure recently proposed by Platzman. General results on the spectral approximation of unbounded, selfadjoint operators are also given in this paper.

**[1]**J. H. BRAMBLE & J. E. OSBORN, "Rate of convergence estimates for nonselfadjoint eigenvalue approximations,"*Math. Comp.*, v. 27, 1973, pp. 525-549. MR**0366029 (51:2280)****[2]**P. G. CIARLET,*Numerical Analysis of the Finite Element Method*, Univeristy of Montreal Press, Montreal, 1976. MR**0495010 (58:13778)****[3]**A. K. CLINE, G. H. GOLUB & G. W. PLATZMAN, "Calculation of normal modes of oceans using a Lanczos method,"*Sparse Matrix Computations*, J. Bunch and D. Rose (eds.), Academic Press, New York, 1976, pp. 409-429.**[4]**J. DESCLOUX, M. LUSKIN & J. RAPPAZ, "Approximation of the spectrum of closed operators. The determination of normal modes of a rotating basin". (To appear.) MR**595047 (83h:65123)****[5]**J. DESCLOUX, N. NASSIF & J. RAPPAZ, "On spectral approximation. Part 1. The problem of convergence,"*R.A.I.R.O. Numerical Analysis*, v. 12, no. 2, 1978, pp. 97-112. MR**0483400 (58:3404a)****[6]**J. DESCLOUX, N. NASSIF & J. RAPPAZ, "On spectral approximation. Part 2. Error estimates for the Galerkin method,"*R.A.I.R.O. Numerical Analysis*, v. 12, no. 2, 1978, pp. 113-119. MR**0483401 (58:3404b)****[7]**T. DUPONT, Personal communication.**[8]**T. DUPONT, "Galerkin methods for modeling gas pipelines,"*Constructive and Computational Methods for Differential and Integral Equations*, Lecture Notes in Math., vol. 430, Springer-Verlag, Berlin and New York, 1974. MR**0502035 (58:19223)****[9]**T. DUPONT & H. RACHFORD, JR., "A Galerkin method for liquid pipelines,"*Computational Methods in Applied Sciences and Engineering*, Lecture Notes in Econ. and Math. Systems, vol. 134, Springer-Verlag, Berlin and New York, 1976. MR**0455882 (56:14116)****[10]**T. KATO,*Perturbation Theory for Linear Operators*, Die Grundelehren der Math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR**0203473 (34:3324)****[11]**J. L. LIONS & E. MAGENES,*Problèmes aux Limites Non Homogènes et Applications*, vol. 1, Dunod, Paris, 1968. MR**0247243 (40:512)****[12]**M. LUSKIN, "A finite element method for first order hyperbolic systems." (To appear.) MR**583489 (81i:65092)****[13]**J. NITSCHE & A. SCHATZ, "Interior estimates for Ritz-Galerkin methods,"*Math. Comp.*, v. 28, 1974, pp. 937-958. MR**0373325 (51:9525)****[14]**J. E. OSBORN, "Spectral approximation for compact operators,"*Math. Comp.*, v. 29, 1975, pp. 712-725. MR**0383117 (52:3998)****[15]**G. W. PLATZMAN, "Normal modes of the Atlantic and Indian Oceans,"*J. Physical Oceanography*, v. 5, 1975, pp. 201-221.**[16]**G. W. PLATZMAN, "Normal modes of the world Ocean. Part 1. Design of a finiteelement baratropic model,"*J. Physical Oceanography*, v. 8, 1978, pp. 323-343.**[17]**R. SCOTT, Personal communication.**[18]**G. W. VELTKAMP,*Spectral Properties of Hilbert Space Operators Associated with Tidal Motions*, Drukkerij Wed. G. Van Soest, Amsterdam, 1960. MR**0128212 (23:B1256)**

Retrieve articles in *Mathematics of Computation*
with MSC:
86A05,
65N30

Retrieve articles in all journals with MSC: 86A05, 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521272-6

Article copyright:
© Copyright 1979
American Mathematical Society