On the numerical evaluation of a particular singular twodimensional integral
Authors:
G. Monegato and J. N. Lyness
Journal:
Math. Comp. 33 (1979), 9931002
MSC:
Primary 65D30; Secondary 65B05
MathSciNet review:
528052
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We investigate the possibility of using twodimensional Romberg integration to approximate integrals, over the square , , of integrand functions of the form where is, for example, analytic in x and y. We show that Romberg integration may be properly justified so long as it is based on a diagonally symmetric rule and function values on the singular diagonal, if required, are defined in a particular way. We also investigate the consequences of ignoring fhese function values (i.e. setting them to zero) in the context of such a calculation. We also derive the asymptotic expansion on which extrapolation methods can be based when has a point singularity of a specified nature at the origin.
 [1]
R. L. BISPLINGHOFF, H. ASHLEY & R. L. HALFMAN, Aeroelasticity, AddisonWesley, Reading, Mass., 1957, pp. 188293.
 [2]
J.
N. Lyness, Symmetric integration rules for
hypercubes. III. Construction of integration rules using null
rules, Math. Comp. 19 (1965), 625–637. MR 0201069
(34 #954), http://dx.doi.org/10.1090/S00255718196502010697
 [3]
J.
N. Lyness, An error functional expansion for
𝑁dimensional quadrature with an integrand function singular at a
point, Math. Comp. 30
(1976), no. 133, 1–23. MR 0408211
(53 #11976), http://dx.doi.org/10.1090/S00255718197604082110
 [4]
J.
N. Lyness and B.
W. Ninham, Numerical quadrature and asymptotic
expansions, Math. Comp. 21 (1967), 162–178. MR 0225488
(37 #1081), http://dx.doi.org/10.1090/S0025571819670225488X
 [5]
Charles
C. S. Song, Numerical integration of a double integral with
Cauchytype singularity, AIAA J. 7 (1969),
1389–1390. MR 0245204
(39 #6516)
 [6]
William
Squire, An efficient iterative method for numerical evaluation of
integrals over a semiinfinite range, Internat. J. Numer. Methods
Engrg. 10 (1976), no. 2, 478–484. MR 0455307
(56 #13546)
 [1]
 R. L. BISPLINGHOFF, H. ASHLEY & R. L. HALFMAN, Aeroelasticity, AddisonWesley, Reading, Mass., 1957, pp. 188293.
 [2]
 J. N. LYNESS, "Symmetric integration rules for hypercubes. III. Construction of integration rules using null rules," Math. Comp., v. 19, 1965, pp. 638643. MR 0201069 (34:954)
 [3]
 J. N. LYNESS, "An error functional expansion for Ndimensional quadrature with an integrand function singular at a point," Math. Comp., v. 30, 1976, pp. 123. MR 0408211 (53:11976)
 [4]
 J. N. LYNESS & B. W. NINHAM, "Asymptotic expansions and numerical quadrature," Math. Comp., v. 21, 1967, pp. 162178. MR 0225488 (37:1081)
 [5]
 C. S. SONG, "Numerical integration of a double integral with a Cauchytype singularity," AIAA J., v. 7, 1969, pp. 13891390. MR 0245204 (39:6516)
 [6]
 W. SQUIRE, "Numerical evaluation of a class of singular double integrals by symmetric pairing," Internat. J. Numer. Math. Engrg., v. 10, 1976, pp. 703708. MR 0455307 (56:13546)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D30,
65B05
Retrieve articles in all journals
with MSC:
65D30,
65B05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197905280526
PII:
S 00255718(1979)05280526
Article copyright:
© Copyright 1979
American Mathematical Society
