Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Stable evaluation of polynomials in time $ {\rm log}\,n$

Authors: Roland Kusterer and Manfred Reimer
Journal: Math. Comp. 33 (1979), 1019-1031
MSC: Primary 65G05; Secondary 68C25
MathSciNet review: 528054
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm is investigated which evaluates real polynomials of degree n in time $ \log n$ at asymptotically minimum costs. The algorithm is considerably stable with respect to round-off.

References [Enhancements On Off] (What's this?)

  • [1] A. BORODIN & I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems, American Elsevier, New York, 1975. MR 0468309 (57:8145)
  • [2] H. EHLICH & K. ZELLER, "Auswertung der Normen von Interpolationsoperatoren," Math. Ann., v. 164, 1966, pp. 105-112. MR 0194799 (33:3005)
  • [3] M. REIMER, "Auswertungsverfahren für Polynome in mehreren Variablen," Numer. Math., v. 23, 1975, pp. 321-336. MR 0381282 (52:2179)
  • [4] M. REIMER, "Auswertungsalgorithmen fast-optimaler numerischer Stabilität für Polynome," Computing, 17, 1977, pp. 289-296. MR 0431609 (55:4606)
  • [5] TH. J. RIVLIN, The Chebyshev Polynomials, Wiley, New York, 1974. MR 0450850 (56:9142)
  • [6] H. S. SHAPIRO, Extremal Problems for Polynomials and Power Series, Master's thesis, M.I.T., Cambridge, Mass., 1951.
  • [7] J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, N.J., 1963. MR 0161456 (28:4661)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65G05, 68C25

Retrieve articles in all journals with MSC: 65G05, 68C25

Additional Information

Keywords: Polynomial evaluation, parallel processing, growth of the error norm
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society