A polynomial representation of hybrid methods for solving ordinary differential equations
Author:
G. K. Gupta
Journal:
Math. Comp. 33 (1979), 12511256
MSC:
Primary 65L05
MathSciNet review:
537968
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A polynomial representation of the hybrid methods for solving ordinary differential equations is presented. The advantages of the representation are briefly discussed. Also it is shown that one step taken using a hybrid method is equivalent to two steps of the usual multistep methods; one step taken using an explicit method and the other taken using an implicit method. Therefore, the hybrid methods are really a special case of cyclic methods.
 [1]
J.
C. Butcher, A modified multistep method for the numerical
integration of ordinary differential equations, J. Assoc. Comput.
Mach. 12 (1965), 124–135. MR 0178573
(31 #2830)
 [2]
Germund
Dahlquist, Convergence and stability in the numerical integration
of ordinary differential equations, Math. Scand. 4
(1956), 33–53. MR 0080998
(18,338d)
 [3]
John
Donelson III. and Eldon
Hansen, Cyclic composite multistep predictorcorrector
methods, SIAM J. Numer. Anal. 8 (1971),
137–157. MR 0282531
(43 #8242)
 [4]
C.
W. Gear, Hybrid methods for initial value problems in ordinary
differential equations, J. Soc. Indust. Appl. Math. Ser. B Numer.
Anal. 2 (1965), 69–86. MR 0179490
(31 #3738)
 [5]
C.
William Gear, Numerical initial value problems in ordinary
differential equations, PrenticeHall, Inc., Englewood Cliffs, N.J.,
1971. MR
0315898 (47 #4447)
 [6]
William
B. Gragg and Hans
J. Stetter, Generalized multistep predictorcorrector methods,
J. Assoc. Comput. Mach. 11 (1964), 188–209. MR 0161476
(28 #4680)
 [7]
G.
K. Gupta, Implementing secondderivative
multistep methods using the Nordsieck polynomial representation,
Math. Comp. 32 (1978), no. 141, 13–18. MR 0478630
(57 #18107), http://dx.doi.org/10.1090/S00255718197804786307
 [8]
J.
J. Kohfeld and G.
T. Thompson, Multistep methods with modified predictors and
correctors, J. Assoc. Comput. Mach. 14 (1967),
155–166. MR 0242375
(39 #3706)
 [9]
J. J. KOHFELD & G. T. THOMPSON (1968), "A modification of Nordsieck's method using an 'offstep' point," J. Assoc. Comput. Mach., v. 15, pp. 390401.
 [10]
J.
D. Lambert, Computational methods in ordinary differential
equations, John Wiley & Sons, LondonNew YorkSydney, 1973.
Introductory Mathematics for Scientists and Engineers. MR 0423815
(54 #11789)
 [11]
Arnold
Nordsieck, On numerical integration of ordinary
differential equations, Math. Comp. 16 (1962), 22–49. MR 0136519
(24 #B2552), http://dx.doi.org/10.1090/S00255718196201365195
 [12]
Hans
J. Stetter, Cyclic finitedifference methods for ordinary
differential equations, Conference on the Numerical Solution of
Differential Equations (Univ. Dundee, Dundee, 1973) Springer, Berlin,
1974, pp. 134–143. Lecture Notes in Math., Vol. 363. MR 0483470
(58 #3471)
 [13]
C.
S. Wallace and G.
K. Gupta, General linear multistep methods to solve ordinary
differential equations, Austral. Comput. J. 5 (1973),
62–69. MR
0362919 (50 #15357)
 [1]
 J. C. BUTCHER (1965), "A modified multistep method for the numerical integration of ordinary differential equations," J. Assoc. Comput. Mach., v. 12, pp. 124135. MR 0178573 (31:2830)
 [2]
 G. G. DAHLQUIST (1956), "Numerical integration of ordinary differential equations," Math. Scand., v. 4, pp. 3350. MR 0080998 (18:338d)
 [3]
 J. DONELSON III & E. HANSEN (1971), "Cyclic composite multistep predictor corrector methods," SIAM J. Numer. Anal., v. 8, pp. 137157. MR 0282531 (43:8242)
 [4]
 C. S. GEAR (1965), "Hybrid methods for initial value problems in ordinary differential equations," SIAM J. Numer. Anal., v. 2, pp. 6986. MR 0179490 (31:3738)
 [5]
 C. S. GEAR (1971), Numerical Initial Value Problems in Ordinary Differential Equations, PrenticeHall, Englewood Cliffs, N. J. MR 0315898 (47:4447)
 [6]
 W. GRAGG & H. J. STETTER (1964), "Generalized multistep predictorcorrector methods," J. Assoc. Comput. Mach., v. 11, pp. 188209. MR 0161476 (28:4680)
 [7]
 G. K. GUPTA (1978), "Implementing secondderivative multistep methods using the Nordsieck polynomial representation," Math. Comp., v. 32, pp. 1318. MR 0478630 (57:18107)
 [8]
 J. J. KOHFELD & G. T. THOMPSON (1967), "Multistep methods with modified predictors and correctors," J. Assoc. Comput. Mach., v. 14, pp. 155166. MR 0242375 (39:3706)
 [9]
 J. J. KOHFELD & G. T. THOMPSON (1968), "A modification of Nordsieck's method using an 'offstep' point," J. Assoc. Comput. Mach., v. 15, pp. 390401.
 [10]
 J. D. LAMBERT (1973), Computational Methods in Ordinary Differential Equations, Wiley, New York. MR 0423815 (54:11789)
 [11]
 A. NORDSIECK (1962), "On the numerical integration of ordinary differential equations," Math. Comp., v. 16, pp. 2249. MR 0136519 (24:B2552)
 [12]
 H. J. STETTER (1974), "Cyclic finitedifference methods for ordinary differential equations," in Conference on the Numerical Solution of Differential Equations (G. A. Watson, Ed.), Lecture Notes in Math., No. 363, SpringerVerlag, Berlin and New York, pp. 134143. MR 0483470 (58:3471)
 [13]
 C. S. WALLACE & G. K. GUPTA (1973), "General linear multistep methods to solve ordinary differential equations," Austral. Comput. J., v. 5, pp. 6269. MR 0362919 (50:15357)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L05
Retrieve articles in all journals
with MSC:
65L05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197905379686
PII:
S 00255718(1979)05379686
Keywords:
Linear multistep methods,
hybrid methods,
numerical solution of ordinary differential equations
Article copyright:
© Copyright 1979
American Mathematical Society
