A polynomial representation of hybrid methods for solving ordinary differential equations

Author:
G. K. Gupta

Journal:
Math. Comp. **33** (1979), 1251-1256

MSC:
Primary 65L05

MathSciNet review:
537968

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A polynomial representation of the hybrid methods for solving ordinary differential equations is presented. The advantages of the representation are briefly discussed. Also it is shown that one step taken using a hybrid method is equivalent to two steps of the usual multistep methods; one step taken using an explicit method and the other taken using an implicit method. Therefore, the hybrid methods are really a special case of cyclic methods.

**[1]**J. C. BUTCHER (1965), "A modified multistep method for the numerical integration of ordinary differential equations,"*J. Assoc. Comput. Mach.*, v. 12, pp. 124-135. MR**0178573 (31:2830)****[2]**G. G. DAHLQUIST (1956), "Numerical integration of ordinary differential equations,"*Math. Scand.*, v. 4, pp. 33-50. MR**0080998 (18:338d)****[3]**J. DONELSON III & E. HANSEN (1971), "Cyclic composite multistep predictor corrector methods,"*SIAM J. Numer. Anal.*, v. 8, pp. 137-157. MR**0282531 (43:8242)****[4]**C. S. GEAR (1965), "Hybrid methods for initial value problems in ordinary differential equations,"*SIAM J. Numer. Anal.*, v. 2, pp. 69-86. MR**0179490 (31:3738)****[5]**C. S. GEAR (1971),*Numerical Initial Value Problems in Ordinary Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J. MR**0315898 (47:4447)****[6]**W. GRAGG & H. J. STETTER (1964), "Generalized multistep predictor-corrector methods,"*J. Assoc. Comput. Mach.*, v. 11, pp. 188-209. MR**0161476 (28:4680)****[7]**G. K. GUPTA (1978), "Implementing second-derivative multistep methods using the Nordsieck polynomial representation,"*Math. Comp.*, v. 32, pp. 13-18. MR**0478630 (57:18107)****[8]**J. J. KOHFELD & G. T. THOMPSON (1967), "Multistep methods with modified predictors and correctors,"*J. Assoc. Comput. Mach.*, v. 14, pp. 155-166. MR**0242375 (39:3706)****[9]**J. J. KOHFELD & G. T. THOMPSON (1968), "A modification of Nordsieck's method using an 'off-step' point,"*J. Assoc. Comput. Mach.*, v. 15, pp. 390-401.**[10]**J. D. LAMBERT (1973),*Computational Methods in Ordinary Differential Equations*, Wiley, New York. MR**0423815 (54:11789)****[11]**A. NORDSIECK (1962), "On the numerical integration of ordinary differential equations,"*Math. Comp.*, v. 16, pp. 22-49. MR**0136519 (24:B2552)****[12]**H. J. STETTER (1974), "Cyclic finite-difference methods for ordinary differential equations," in*Conference on the Numerical Solution of Differential Equations*(G. A. Watson, Ed.), Lecture Notes in Math., No. 363, Springer-Verlag, Berlin and New York, pp. 134-143. MR**0483470 (58:3471)****[13]**C. S. WALLACE & G. K. GUPTA (1973), "General linear multistep methods to solve ordinary differential equations,"*Austral. Comput. J.*, v. 5, pp. 62-69. MR**0362919 (50:15357)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537968-6

Keywords:
Linear multistep methods,
hybrid methods,
numerical solution of ordinary differential equations

Article copyright:
© Copyright 1979
American Mathematical Society